NAME	DATE	CLASS
TANTIL	DATE	CLASS

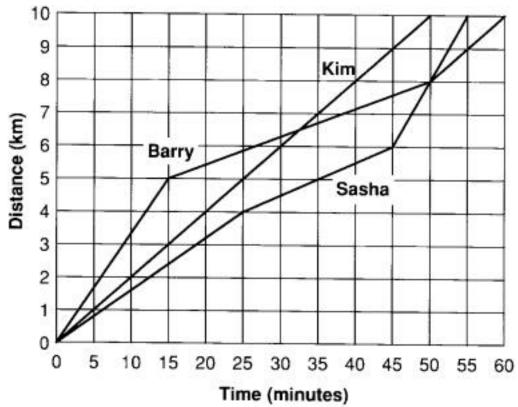
STUDY GUIDE

Chapter 3

Describing Motion

In each of the follow provided.	ing statements, a term has been scrambled. Unscramble the term and write it on the line
	1. When something moves, it changes <i>iitsopon</i> .
	2. Otoinm can be described as a change in position,
	3. Speed is the <i>etra fo neahgc</i> in position.
	4, Sttananuoseni eedps is the rate of motion at any given instant.
	5. A speed that doesn't vary is called a <i>tntnsocs dspee</i> .
	6. The total distance traveled divided by the total time of travel is called the <i>evraage pesed</i> .
	7. A <i>miet-nasidtce</i> graph makes it possible to "see" the motion of an object over a period of time.

Now find each unscrambled term in the hidden word puzzle below. The terms can be written horizontally, vertically, or diagonally and forward or backward. Circle each term as you find it


												S		
C	Ο	N	S	T	Α	N	T	S	P	E	Ε	D	Z	В
P	В	S	R	F	P	A	Z	A	C	G	Y	В	F	X
M	O	T	I	O	N	O	A	C	E	В	X	G	D	A
R	O	A	M	G	T	O	S	Z	R	Η	A	G	F	Y
										X			Z	
G	T	T	Q	Η	M	O	L	В	T	В	X	C	В	A
L	Y	A	Ž	M	E	G	S	O	Ε	I	I	Ε	I	S
T	C	N	Y	P	D	В	В	I	O	M	O	A	C	X
M	P	E	L	P	I	I	F	M	F	В	D	N	J	J
Q	C	O	C	I	S	M	I	Q	\mathbf{C}	I	K	P	C	X
												M		
C	P	S	P	O	A	F	P	F	A	Ο	S	N	N	G
E	L	S	F	C	N	C	C	N	N	D	V	A	0	E
F	L	P	O	J	\mathbf{C}	J	G	A	G	D	G	Ι	S	T
D	E	E	P	S	Ε	G	A	R	Ε	V	A	E	0	S
G	S	E	F	В	N	L	O	O	N	Q	T	Η	P	Q
7.	R	D										Α		

REINFORCEMENT

Chapter 3

Describing Motion

Sasha, Kim, and Barry decided to have a 10-km bicycle race after school. They asked the coach to show them how far 10 km was on the school track. They then had their race on the track. Their race results are shown on the timedistance graph below. Use this graph to fill in the table of race results, calculate average speeds, and answer the questions.

i	Race Results						
Cyclist	Total distance	Total time	Average speed				
Kim							
Sasha							
Barry							

- Which cyclist kept a constant speed during the entire race? What was this Speed?
- Which cyclist won the race? What was the winning time?
- Which cyclist placed second in the race? What was second place time?
- Which cyclist placed last? What was last place time?
- Which cyclist started off fastest?

NAME_	DATE	CLASS	
ENRICHMENT			Chapter 3
Describing Mot	ion		
SPEED TRAP			
traveling faster than 20 mph Design an experiment to	in front of your school?	How often have you seen cars that a straveling in the 20 mph speed zone the driver's attention.	
1. List the procedures you	will perform		
2. Design a data table to rec	cord your data.		
Questions and Analysis 1. What is the correct unit fo	r speed in SI units?		
2. What is 20 mph equal to it	n kilometers per hour? In meters	per second?	
3. Your experiment measure approximately measure the	d the average speed of each car. ne instantaneous speed of each car	How could you change your experin?	nent to
4. Find the average of the average are not, what would you	erage speeds of the cars in your ex	speriment. Are cars traveling the leg	gal speed limit? If