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ABSTRACT 
This paper explores the use of Higher Order Statistics for 
the recovery of the carrier phase and frequency offset in a 
QAM receiver operating in an additive Gaussian noise 
channel. The technique is based on newly established 
properties of the 3rd and 4th-order cumulants of the 
demodulated QAM signal. The resulting method may be 
thought of as higher-order extension of the second order 
automatic frequency estimators (AFE) commonly reported 
in the literature [2][3]. The performance is analyzed and 
simulated for a QAM system in the presence of channel 
noise. The results are compared to the autocorrelation-
based estimators for various frequency offset values and 
SNR. The issues related to the bias and variance of the 
higher order moment estimators are addressed and their 
effect on the estimation accuracy is analyzed in light of the 
results. 
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1. INTRODUCTION 
In QAM receivers such as those used in wireless 
communications, satellite and cable modems [6] each data 
burst includes a sequence of training bits (preamble) that 
are exploited by the receiver for burst identification as well 
as carrier and symbol timing recovery.  

Carrier recovery schemes based on feedback and feed for-
ward structures and operating on a single sample per sym-
bol are widely used in burst receivers. Feed forward 
schemes are well suited for burst-mode systems due to their 
short acquisition time. They also avoid some of the prob-
lems associated with feedback systems, such as hang up 
issue during acquisition [5]. The implementation complex-
ity of such schemes as the ML estimators for frequency 
offset can be quite high when high performance is desired. 

To remedy the complexity issue, simplified schemes, based 
on the ML estimators have been derived; such as the fre-
quency offset method in [3]. These estimators encompass 
computing the autocorrelation of the baseband signal using 
the match filter output data. The actual offset may then be 

derived directly from the angle of the complex autocorrela-
tion, averaged over a number of symbols.  

A main caveat in estimators based on second order 
statistics is their sensitivity to additive noise, which causes 
performance to degrade in low SNR conditions [2]. 

Higher-order statistics (HOS) have shown promising 
potential in a number of signal processing applications, and 
are of particular value when dealing with a mixture of 
Gaussian and non-Gaussian processes [8]. Their inherent 
blindness to Gaussian noise (both white and color) makes 
them particularly attractive in estimation and detection 
problems in low SNR conditions.  

In this paper we investigate the effectiveness of a new 
approach for estimating the carrier frequency offset of a 
QAM signal using the fourth-order cumulant (FOC) of the 
demodulated baseband signal. The estimation scheme is 
based on multiple samples per symbol and thus does not 
rely on a proper sampling of the output of the matched 
filter. It does however assume that the symbol frequency is 
correctly available. Since only the higher order cumulant is 
used, the effect of additive Gaussian noise is theoretically 
less pronounced than in second-order methods. The 
estimator does not require an apriori pre-amble sequence, 
but rather any sequence with a known symbol statistics –
for instance rotating symbols, or alternating diagonal 
symbols. The results for various frequency offsets and 
various noise levels are generated and compared (section 
3.2). The issues related to the bias and variance of the 
higher order moment estimators are addressed and their 
effect on the estimation accuracy is analyzed in light of the 
results in section 3.4.  

2. CARRIER ESTIMATION 
2.1 Signal Model 
The baseband samples of a demodulated QAM signal can 
be represented as:  
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Where nS  is the complex symbol, f∆  is the frequency 

offset that needs to be estimated; saT  is the sampling 



frequency of the matched filter, assumed to be an integer 
multiple K of the symbol rate; n is the sample index and N 
is the total number of samples in the observation window. 
The carrier phase θ  is an unknown phase error and nυ  
is an additive Gaussian noise with independent in-phase 
and quadrature components, each with zero mean and a 
given variance. For ease of notation, the frequency offset is 
written as an incremental phase error normalized by the 
sampling rate saTf ⋅∆⋅=Ω π2 . Thus Equ 1 is written 
as:  
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Both phase and frequency offsets are assumed unknown 
but non-random parameters, and are constants for the 
duration of the burst. The symbol frequency is assumed to 
be known at the receiver, though the actual timing phase is 
not required.  

 

2.2 Frequency Offset Estimation with FOC 
For a given complex sequence nZ , the horizontal slice of 
the 4th-order cumulant is a one-dimensional function of lag 
and may be expressed in terms of the second order 
moments as [4] [8]:  
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Where the signal value at lag L, the autocorrelation and the 
4th-order moment functions are given by : 
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respectively. It is assumed that L represents a number of 
samples spanning an integer number of symbols. As a 
result, the 4th order moment function may be evaluated for 
various data patterns. For instance, if L represents 1 symbol 
and given the 4 corner symbols of a QAM constellation:  

jaaS +=1  ;    jaaS −=2 ;   

jaaS −−=3 ;   jaaS +−=4  

and assuming the preamble consists of 2 alternating 
diagonal corner symbols, and a raised cosine Nyquist filter 
is used, then it may be shown that higher order correlations 
may be expressed in terms of the symbol energy: 
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Substituting in Equ 3 above, we get:  
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after grouping terms,  the normalized kurtosis is:  
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expansion,  
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The frequency offset estimate is then:  
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This estimator may be thought of as a higher-order 
extension to the one based on the 2nd order 
(autocorrelation) function given in [2] as:  
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where R is the autocorrelation function at lag L:  
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Lnn ZZELR +=  

2.3 Phase Offset Estimation  
For a given complex sequence nZ , the horizontal slice of 
the 3rd-order cumulant is a one-dimensional function of lag 
given by [4][8]:  
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Given the 4 corner symbols of a QAM constellation 
(described above) and assuming the effect of the Nyquist 
filter were ignored for now, then it may be shown that:  
o If any 2 diagonal symbols or if all 4 symbols are sent, 

and regardless of the value of the phase and frequency 
offset, then the skewness (i.e. the value of )(3 LC  at 
lag L=0) is always null: 0)0(3 =C . 

o If 2 diagonal symbols are sent (for instance, 31 , SS ), 
and L represent the number of samples 1 symbol away, 
then the 3rd-order cumulant becomes:  
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If the real and imaginary parts of are added, we get:  
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Since the average symbol energy is: 22aE s =  then we 
can write the normalized versions of the above entities as:  
The normalized 3rd-order cumulant:  
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The normalized sum of the real and imaginary:  
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If the frequency offset is zero (or known), then the phase 
may be estimated as:  
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2.4 Effect of the Nyquist Filter 
The results of the previous section did not account for the 
presence of a raised cosine filter. In general [9], the 
cumulant of order P at the output Y of a filter h (n) 
(denoted by ][yCP ) may be expressed in terms of the 
cumulant or order P at the input W of the filter (denoted by 

][yCW ), and the sum of the thP  power of the 
coefficients:  
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Similarly, the normalized cumulant, for example the 4th 
order normalized by the 2nd order, and defined as: 
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3. Performance Analysis: Frequency Estimate 
3.1 Simulation Data 
A passband QPSK transmitter/receiver system (Figure 1) is 
modeled. The carrier frequency was set to 5 MHz and the 
symbol rate to 160 Ksymb/sec. The transmitter and receiver 
Nyquist filters are root-raised cosine with a rolloff of 0.25. 
The frequency estimation is done using blocks of 100 
symbols at the output of the receiver’s Nyquist. An 

oversampling of 8 samples / symbol is used. The frequency 
offset was varied from 200 to 10000 Hz. Noise is added to 
cover a spectrum SNR range from 8 to 40 dB. 
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Figure 1: Carrier recovery at the receiver 
 

3.2 Simulation Results 
The table below is a summary of the frequency estimation 
using both 2nd and 4th order methods. 
 

Method SNR ∆f=200 Hz 2 kHz 10 kHz 

2nd order 199  Hz 2000  Hz 10000  Hz 

4th order 

40 
dB 200 2007 10026 

2nd order 190 2002 9999 

4th order 

20 

198 2009 10024 

2nd order 205 1982 9992 

4th order 

15 

202 1990 10016 

2nd order 221 1954 9992 

4th order 

8 

198 1972 10016 

 

3.3 Analysis 
It is observed that in clean condition, the 2nd-order 
estimator is more accurate for large values of ∆F, and the 
4th order estimator is more accurate for smaller values. As 
the channel gets noisy, both estimators degrade. However 
the level of degradation of the 4th order one is not as 
pronounced at lower values of ∆F. 
The above suggests that even though the 4th order estimator 
is theoretically more robust to Gaussian noise, the high 
variance of that estimator when computed from a block of 
100 symbols is too high and outweighs the benefit of noise 
robustness. It was also observed as different runs of the 
same setup leads to a relatively wide range in the frequency 
estimation.  A possible explanation for the lower accuracy 

h(k) 
 W Y  



of the 4th order case is the bias and variance of the 
estimators of the 4th-order statistics when computed from a 
finite set of data points, as detailed in the next section. 

3.4 Bias and Variance of the HOS estimators 
When estimating statistical entities using time averages (in 
Equ 3 and 6), a variance and sometimes a bias is introduced 
and is more pronounced in the higher order moments than 
it is in the 2nd order ones.  

3.4.1 Case of the baseband QAM signal 
The demodulated baseband signal given in Equ 2 may be 
thought of as a complex sinusoid whose frequency is the 
result of inter-modulation between the symbol rate and the 
frequency offset (Ω ). We’ve shown in [4] that the 
estimators for the 3rd and 4th-order statistics of a 
deterministic sine wave are biased whenever the segment 
size is not an integer number of periods. This bias term 
consists of higher frequency cosine and sine terms and may 
be significantly reduced if the estimators are computed for 
a few overlapping segments and then averaged. Therefore 
computing the higher moments from a single block of data 
is not effective in reducing the bias, even if a large segment 
size is used. We also note that there is only 1 bias term in 
the second moment of a sine wave, 2 terms in the 3rd 
moment and 3 terms in the 4th moment, thus the estimation 
error based on the 4th order is at least 3 times as high as the 
one based on the 2nd order. 

3.4.2 Case of Gaussian noise 
The time-average estimator of the 4th-order statistics of a 
Gaussian process is only asymptotically unbiased, thus it 
contains a bias term for a finite segment size. As shown in 
[4], an unbiased estimator for the kurtosis (i.e. C4 (0)) may 
be devised, but it is not easy to device one for the general 
expression of C4 (L). As a result, computing Equ 3 from a 
finite data segment will always contain a bias term that is 
function of the noise energy, and therefore increases with 
decreasing SNR.  In addition to the bias, the variance of the 
time-average estimators of the 2nd, 3rd, and 4th -order 
statistics are function of the process variance and increase 
exponentially with the order. We’ve shown in [4] these 
variances to be:   
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where υ  is the variance of the underlying process (i.e the 
Gaussian noise energy).  As a result, the segment size N 
has to be significantly increased (by 48 2υ ) in order to 
bring the variance of the 4th order moment at par with the 
2nd order.  

4. CONCLUSION  
We’ve explored the use of higher order statistics for the 
general problem of carrier recovery in a QAM receiver. 
New estimators for the carrier phase and frequency offset 
were developed based on newly established expressions of 
the 3rd and 4th-order cumulants of the demodulated QAM 
signal. The performance in noise, compared to 2nd-order 
estimator shows mixed results for small and large 
frequency offset values; however we did verify that the 
higher order estimator is more robust to noise for small 
values of frequency offsets, though it is not the case for 
larger ones. Clearly the improvement depends on the 
ability to find better ways to compute the higher order 
statistics in a way to reduce the large bias and variance, 
when computing them  from a finite data set. If this can be 
done, then more noise-robust methods for carrier 
estimation may be developed based on higher order 
statistics. 
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