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1.0 I

 

NTRODUCTION

 

 

 

1.1  Context and Motivation

 

In the context of mobile telephony, speech signals are often corrupted by surrounding acous-
tic noise such as engine, traffic and wind as well as by system-introduced noise such as quantiza-
tion, handoff, and channel interference. This in turn has an adverse effect on the perceived quality 
and intelligibility of speech as well as on the performance of speech processing algorithms 
throughout the network, such as speech coding and recognition. 

Wireless telephony by definition has a lower speech quality than wireline, due to the speech
coding process. If, in addition, the cellular system encodes a noisy signal prior to its transmission,
then further degradation may occur, since coders rely on a model for the clean signal which is not
suitable for the noisy signal. Similarly, speech recognition systems will degrade drastically in
noisy environments, due to differences between testing and training conditions.

The aim of acoustic noise reduction is to minimize the effect of noise on the performance of
voice communication systems. This means improving the perceived quality to the human listener
as well as providing a more appropriate signal for estimating crucial speech parameters such as
spectral content, pitch, voicing, and others. 

The 

 

quality

 

 of speech signals is a subjective measure which reflects on the way the signal is
perceived by listeners. It can be expressed in terms of how pleasant speech sounds to the human
ear. 

 

Intelligibility

 

 on the other hand is an objective measure of the amount of information which
can be extracted by listeners from the given signal  [20]. 

 

Intelligibility

 

 is important in situations -
such as military or emergencies- where the content of the message is critical.

 

1.2  Technical Challenge

 

Noise reduction is an ancient art, but is still far from a perfect science. Conceptually, it can 
be viewed as the combination of the classical problem of signal estimation, coupled with psychoa-
coustic aspects that account for the characteristics of the speech signal and the peculiarities of 
human hearing. The challenge is that the latter aspect is less understood, thus preventing one from 
formulating the problem in a way that leads to a globally optimum solution. As a result, a number 
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of suboptimal solutions based on mathematically tractable distortion measures or on some proper-
ties of the auditory system have been proposed.   

 

1.3  Structure of this Paper

 

The paper is structured as follows: section 2 is the business perspective on NR. Section 3 
provides a brief background on speech properties. The common approaches to NR are described in 
section 4. The system aspects of using NR in a cellular systems are discussed in sections 5 and 6. 
An overview of some commercial implementations is given in section 7.
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2.1  Business Rationale

 

•

 

Market needs: 

 

speech quality is gaining increasing importance in the context of Personal 
Communication Services as greater consumer acceptance is being sought by advertising 
these to be as reliable in service and quality as the wireline counterpart. Analysts predict 
that service functionality, which includes voice quality, will eventually become more impor-
tant than price as a differentiator in wireless services. 

•

 

Competitive importance:

 

 telcos and manufacturers seek various proprietary solutions to 
improve the end-to-end voice quality on their networks in an attempt to differentiate their 
products from others. 

•

 

Strategic importance:

 

 voice processing technologies, such as speech enhancement or echo 
cancellation, are an integral part of voice communication network equipment. Ownership of 
this technology, as opposed to reliance on acquired solutions, is almost a necessity to mini-
mize exposure given the strategic importance of these features. 

 

2.2  Target Markets

 

Wireless telephony constitutes a large potential market for noise reduction. The technology 
however is also applicable to other communication contexts where ambient noise needs to be 
removed. The market thus targeted includes, though not limited to, the following applications: 

•

 

Cellular phone hands free cradles:

 

 to reduce ambient road, engine and background speaker 
to the far-end listener. 

•

 

International long distance telephony:

 

 to improve the intelligibility on low-quality interna-
tional voice circuits where old analog technologies cause static and other switching noise on 
these communications. 

•

 

Voice-activated phone dialing:

 

 to increase the voice recognition hit rates when background 
noise is present. 

•

 

Internet telephony:

 

 to improve voice quality in noisy office environments, particularly 
where the input microphone is placed somewhere far from the speaker (ex on the computer 
terminal).

•

 

Teleconferencing:

 

 to remove the effect of interfering speakers or background noise (chair 
movements, etc...) in handsfree teleconferencing. 



 

•

 

Cockpit Intercom Systems:

 

 to improve aircraft intercom and air-to-ground communications 
by removing wind and engine noise. 

•

 

Voice Storage systems:

 

 to improve compression vocoder performance in voice storage sys-
tems where ambient noise is an issue. 

•

 

Emergency 2-way radio:

 

 to improve voice intelligibility where vehicle noise (siren, etc.) 
disrupts communications.

 

2.3  Telephony Application Objectives

 

In wireless telephony, the objectives of telephone companies are to: 
• Provide higher quality services to subscribers, that exceed other telcos’.

• Provide a ‘comfortable’ call to the end user, thus increasing the call holding patterns, and 
thus revenues.

The objectives of manufacturers on the other hand are to: 
• Provide telcos with equipments and features that delivers consistent and high end-to-end 

voice quality to all users on that telco’s network.

• Provide end-users with hands-free equipment and handsets that have more professional 
sounding quality, particularly appealing to business users. 
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3.1  Speech Production

 

Speech is produced when air is forced from the lungs through the vocal cords and along the 
vocal tract. The vocal tract introduces short-term correlations (of the order of 1 ms) into the signal, 
and can be thought of as a filter with broad resonances, called 

 

formants, 

 

whose frequencies are 
controlled by varying the shape of the tract, like moving the position of the tongue. Speech sounds 
can be broken into three classes depending on their mode of excitation:

 

1.

 

Voiced

 

 sounds: are quasi-periodic in the time domain and harmonically structured in the fre-
quency domain. Their short-time spectrum is characterized by its 

 

fine

 

 and 

 

formant

 

 structure. 
The 

 

fine

 

 harmonic structure is attributed to the vibrating vocal chords. This 

 

pitch

 

 period is typ-
ically between 2 and 20 ms. The spectral envelope is characterized by a set of peaks, the 

 

for-
mants.

 

 For the average vocal tract there are 3 to 5 formants below 5 Khz. The amplitudes and 
locations of the first 3 formants, usually occurring below 3 Khz, are quite important both in 
speech synthesis and perception. 

 

2.

 

Unvoiced

 

 sounds: result when the excitation is a noise-like turbulence produced by forcing air 
at high velocities through a constriction in the vocal tract. Such sounds show little long-term 
periodicity, although short-term correlations due to the vocal tract are still present. This aperi-
odic speech constitute about a third of the total speech. Example of unvoiced phonemes 
include /s/ (as in sort) and /S/ (shore).

 

3.

 

Plosive

 

 sounds result when a complete closure is made in the vocal tract, and air pressure is 
built up behind this closure and released suddenly. Examples include /p/ (port) and /b/ (bay). 



 

Some sounds are considered to be a mixture of two types: voiced fricatives (/z/) result when
both vocal cord vibration and a constriction in the vocal tract are present. 

 

3.2  Speech Perception

 

There is a limit to the sensitivity of the human ear, known as the threshold of hearing. This
threshold varies with frequency: we are able to hear a much softer sound at 4 kHz than at 50 Hz or
15 kHz. At 25 kHz, this threshold is off the scale: no matter how loud the sound is, we can’t hear it. 

Another aspect of hearing is the phenomenon of 

 

masking

 

 in which the perception of one
sound is obscured by the presence of another  [19]. Simultaneous sounds cause frequency mask-
ing, where a lower frequency sound generally masks a higher-frequency one; sounds delayed with
respect to one another can cause temporal masking of one or both sounds. Masking is due to the
non-linearity of human hearing, that prevents treating the perception of many sounds as a summa-
tion of responses to their tone and bandlimited noise components.

The auditory system is more sensitive to the presence of 

 

energy

 

 than the absence of it, and
tends to ignore aspects of phase.Voiced speech has a high amplitude and a concentration of energy
at low frequency and is therefore more perceptually important than unvoiced speech. For this rea-
son, most enhancement algorithms tend to concentrate on improving the periodic portions of
speech. A proper representation of spectral amplitudes at harmonic frequencies particularly in the
first 3 or 4 formant regions is of crucial important for high speech quality. 
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4.1  Comb Filtering 

 

Since the important audible component of speech is periodic, its harmonic frequencies may 
be identified for the purpose of either preservation or suppression. One basic method involves 
comb filtering, in which a dynamic filter is designed to 

 

comb

 

 through the spectrum, modifying 
energy at equally spaced frequencies to attenuate or enhance them. The frequency response of the 
filter resembles a 

 

comb

 

, with large values at a specified 

 

F

 

O

 

 and its multiples, and low values 
between these harmonics. The impulse response over one period is given by  [13]: 

 

(Eq 1)

 

where 

 

δ

 

(n)

 

 is a unit sample function, 

 

a

 

k

 

 are the filter coefficients, the length of the filter is 

 

(2L + 1)

 

pitch periods, and the pitch period estimate 

 

N

 

k

 

 is computed based on the pitch information of the
speech frame. The filter coefficients are unchanged and only 

 

N

 

k

 

 is updated once every pitch period
based on the pitch information 

 

T

 

k

 

 of the speech waveform being processed. 

To the extent that the speech waveform is periodic over the 

 

2L + 1

 

 pitch periods that the filter
is applied, the speech samples will add constructively while the noise samples sum to zero. The
operation depends on an accurate estimate of the desired signal’s period, and its performance is
best when this signal has stationary traits. 

 

F

 

O

 

 estimation is not always easy and speech signals
very often change from one period to the next, in terms of harmonics and spectral envelope. 
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In the case of a spectral change but constant 

 

F

 

O

 

 during the comb’s window, the filter spreads
the change out over the duration of the window, thus smearing it in time. On the other hand, if 

 

F

 

O

 

changes within the window, a reduction in the reinforcement of the periods in 

 

y(n) 

 

will result. Thus
comb filters work best only during sections of speech where 

 

F

 

O

 

 is not changing rapidly. Moreover,
they can only be applied to the voiced segments, thus requiring a voiced/unvoiced detector, in
addition to a pitch estimator. Figure 1 shows the system diagram of the comb filter used in  [13]. 

 

FIGURE 1.

 

Block diagram of Lim’s comb filtering

 

The results in  [13] indicated that even with perfect estimates of the fundamental frequency,
the adaptive comb filter does not achieve a significant increase in intelligibility at any S/N ratio. A
substantial decrease of intelligibility was observed when the length of the filter was between 7 and
13 pitch periods. At a length of 3 periods, intelligibility does not decrease, but noticeable increases
in S/N ratio were achieved. When the filter length was 3, 7, and 13 pitch periods, the increases
were 3.5 dB, 7 dB and 10 dB respectively. 

 

4.1.1 Variations of the basic method

 

Some noteworthy variations are proposed to the basic comb filter in order to deal with 
smearing spectral changes and segment discontinuity. In  [26], the coefficient set is chosen to adapt 
to the data, as opposed to being constant. The argument is that pitch periods may not be similar 
and thus choosing a constant set does not account for such transitions between periods. The coeffi-
cients 

 

a

 

k

 

 are chosen such that the samples that are 

 

k

 

 periods away best predict the current sample, 
thus making the results less dependent on the precision of the pitch estimate. 

 

T

 

he method in [14] uses a class of windows that has a variable weight in each pitch period. 
The rationale is that when comb filtering is done in a pitch synchronous way, segment discontinu-
ity results when the pitch period changes. This class of windows is claimed to minimize this effect. 

 

4.2  Wiener Filtering and Related Methods

 

Wiener filters are an instance of the general class of optimum filters  [24], where it is desired 

to find an estimate  for a signal  given a number of observations assumed to be the sum of the 

desired signal plus unwanted noise:  . The esti-

mate  is obtained by a linear filter acting on the set of observations. The filter is 

 

optimum

 

 with 

respect to minimizing the 

 

mean square error

 

: . In the case where the sig-

nal and noise are independent processes, it can be shown that the filter that minimizes this error 
must satisfy the equations: 
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(Eq 2)

 

That is the filter coefficients ( ) could be found by solving the 

 

p+

 

1 simultaneous equations
(Eq 2). Here, 

 

R

 

S

 

(m)

 

 and 

 

R

 

N

 

(m)

 

 are the autocorrelation functions of the clean signal and the noise 

 

4.2.1 Frequency-domain fi lters

 

If 

 

S

 

t

 

 is to be estimated using the entire realization of 

 

X

 

t

 

, that is , (this is the case 
when the entire signal is recorded, and then played back) and the processes are independent and 
zero-mean, then the 

 

optimum

 

 filter is given in the frequency domain by: 

 

.

 

(Eq 3)

 

Thus assuming the power spectrum of the speech and noise could somehow be estimated, a speech
enhancement system may be achieved by spectral decomposition and appropriate scaling of the
various frequency coefficients. A generic Wiener-based enhancement system is shown in Figure 2. 

 

FIGURE 2.

 

Generic Wiener-based speech enhancement

 

Power subtraction fi lters

 

Consider a filter whose response is the square root of a Wiener filter, thus: 

 

.

 

(Eq 4)

 

The power spectrum of the output of this filter is: 

 

(Eq 5)

 

This filtering operation is thus equivalent to 

 

subtracting

 

 an estimate of the noise power from the
spectrum of the noisy speech. Therefore, it is a 

 

power spectral subtraction

 

 system. 

 

Magnitude subtraction fi lters

 

Similarly, by considering a filter whose response is: , 

 

R

 

S

 

m

 

( )

 

h

 

β

 

R

 

S

 

m

 

β

 

–

 

( )

 

R

 

N

 

m

 

β

 

–

 

( )

 

+

 

{ }

 

β

 

0=

 

p

 

∑

 

=

 

m

 

0 1

 

…

 

p

 

, ,{ }∈

 

h

 

β

 

I

 

∞

 

–

 

∞

 

( , )=

 

H f

 

( )

 

P

 

S

 

f

 

( )

 

P

 

S

 

f

 

( )

 

P

 

N

 

f

 

( )

 

+
----------------------------------------

 

SNR f

 

( )

 

SNR f

 

( )

 

1+
-------------------------------= =

 

Enhanced 
Speech

noisy
speech

 

X � � �

 

Noise 
Estimation

FFT

Energy comput.
Speech Detection

SNR 
copmputations 

Filter coef.
Computations

Freq. IFFT Scaling

and smoothing 
& thresholding 

 

H f

 

( )

 

P

 

S f

 

( )

 

2

 

S f

 

( )

 

2

 

N f

 

( )

 

2

 

+
---------------------------------------------=

 

P

 

out

 

P

 

i n

 

H f

 

( )

 

2

 

S f

 

( )

 

2

 

N f

 

( )

 

2

 

+

 

( )

 

S f

 

( )

 

2

 

S f

 

( )

 

2

 

N f

 

( )

 

2

 

+
---------------------------------------------

 

•

 

S f

 

( )

 

2

 

= = =

 

H f

 

( )

 

M

 

1

 

N f

 

( )

 

2

 

S f

 

( )

 

2

 

N f

 

( )

 

2

 

+
---------------------------------------------–=



 

a 

 

magnitude

 

 spectral subtraction is obtained. 

 

4.2.2 Pros and Cons

 

The advantages of the Wiener-based approach is its intuitive basis, its implementation sim-
plicity and its practical effectiveness. Its limitations on the other hand are: 

• Noticeable residual noise which consists of narrow-band signals with time-varying frequen-
cies and amplitudes. This is referred to as musical noise, and is mostly perceived in weak 
bands and weak speech frames. 

• The dependence on a good noise and SNR estimation, which is a problem in itself. Noise is 
often estimated during speech pauses, which in turn relies on the assumption that the back-
ground noise environment remains locally stationary. 

• Ignoring the effects on phase. In experiments where only the complex phase was modified, 
it was found that adding random noise above a threshold causes roughness in the recon-
structed speech. 

 

4.2.3 Some Reported systems

 

In  [2], a power subtraction system with the concept of noise overestimation is introduced. 
The variable oversubtraction factor is based on the estimated SNR in each band. The rationale is 
that strong SNR bands are indicative of a strong speech component and there is no need for 
aggressive subtraction. The suppression schemes in  [3] and  [25] are classical examples of magni-
tude subtraction systems where noise is estimated by averaging the signal magnitude spectrum 
during 

 

non-speech

 

 activity. In  [1], a parametrized Wiener filter with noise oversubtraction is used. 
Some of the classical concepts in  [2] are extended to the new form of subtraction. For instance, 
the concept of ‘spectral floor’ is implemented by setting a lower bound on the filter (i.e., prevent-
ing the filter gain from going below a -10 dB limit). In addition to producing a ‘broadband noise’ 
effect, this prevents coefficient randomness around small values of the gain which would result in 
more annoying musicality of the noise. 

 

4.3  ML and MMSE Spectral Estimation Methods

 

While Wiener-based approaches did not make assumptions about the distributions of speech 
and noise, the following ones are estimation-oriented techniques based on assumed 

 

apriori

 

 distri-
butions of the signals. The solution proposed is an estimator of the spectral components; it is there-
fore the distribution of this spectral component (DFT coefficient), rather than the time samples, 
that is of importance. 

 

4.3.1 ML Estimation of the Speech Envelope

 

Speech enhancement is formulated in

 

 

 

 [15] as a maximum likelihood estimation of the
speech spectral envelope. In this model, the noise is assumed to be a 

 

Gaussian

 

 random process and
the speech a deterministic waveform of unknown amplitude and phase. Thus, each DFT channel
value is given by: , where the speech is given by: , 

 

A

 

k

 

 representing the
speech envelope and 

 

θ

 

k

 

 its phase. The estimator is based on maximizing the 

 

posteriori

 

 probability
of the channel measurement . The estimator of the speech spectrum envelope s

 

k

 

, given
the noisy speech spectrum value 

 

y

 

k

 

 is shown to be:

 

.

 

(Eq 6)
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where  is the measured envelope energy and  the estimate of the noise energy. The
estimation is further refined to account for the probability of speech presence in channel 

 

k

 

. By
assuming the probability of the noise and speech states equally likely, and the 

 

a priori

 

 signal to
noise ratio known, the probability of speech presence in band 

 

k

 

 may be quantified based on
,  and the 

 

apriori 

 

signal to noise ratio: . The resulting esti-
mator is simply the product of the estimator for the clean signal and the probability of speech pres-
ence. 

 

4.3.2 MMSE-based Estimation of the Speech Amplitude

 

The system proposed in  [6] is closely related to and builds on the same principle as  [15], 
except that the DFT coefficients of the noisy observations are assumed to have a Gaussian distri-
bution. The enhancement problem is formulated as an MMSE estimator of the speech spectral 
amplitude. Given the same definition of speech, noise and noisy channel measurements as before, 
the MMSE estimator of the speech amplitude 

 

A

 

k

 

 is given by the conditional expectation, that is: 

, where  is the set of spectral observations over a few 

frames. By making Gaussian assumptions about these spectral values, the estimator can be 

expressed as a spectral gain that is applied to the spectral amplitudes  (

 

p

 

 denotes 

the frame index) and is a function of the local and the true SNR. This estimator may be shown  [4] 
to be a smooth transition between the classical Wiener and power spectral subtraction filters. 

An important aspect of this system is the estimation of the true SNR at each frequency: first, a

local SNR is computed:  at frame 

 

p

 

 and frequency 

 

k

 

,

using the total energy  and the estimate of the noise energy . The so-called 

 

apri-

ori

 

 SNR (i.e., the true SNR) is found by using information from the previous frame, after filtering: 

 

,

 

(Eq 7)

 

where  when  and 0 otherwise. As in  [15], the estimator is conditioned on the
probability of speech presence at frequency 

 

k

 

, which may be expressed in terms of the two SNR
terms defined above. It is shown in  [4] that the proposed SNR smoothing yields an elimination of
any noise artifacts without bringing distortion to the speech signal. 

 

4.4  Kalman Filters

 

The motivation for studying a Kalman filter based noise suppression system is that it can 
handle colored noise and has a reasonable numerical complexity. Its use was proposed in  [21] for 
where experimental results reveal an advantage over Wiener filtering, for the ideal cases where the 
speech parameters are available. The method was first proposed for white Gaussian noise, then 
extended  [12] by incorporating a colored noise model. 

A key issue in Kalman filtering is its reliance on a set of unknown parameters that have to be
estimated from a noisy signal. These include the model parameters for the speech and noise. It is
often assumed that the noise is long-time stationary and consequently its parameters are estimated
during speech pauses. Speech is viewed as a short-time stationary process, e.g., 10-40 ms. Thus an
instantaneous model of the speech has to be obtained from a short segment of noisy measure-
ments. 

 

y k

 

( )

 

2

 

λ

 

w

 

k

 

( )

 

y k

 

( )

 

2

 

λ

 

w

 

k

 

( )

 

SNR

 

pr i or

 

A

 

k

 

2

 

λ

 

w

 

k

 

( )⁄

 

=

 

A

 

k

 

ˆ

 

E A

 

k

 

Y

 

0

 

Y

 

1

 

…, ,{ }

 

=

 

Y

 

0

 

Y

 

1

 

…, ,{ }

 

G p k

 

,( )

 

Y

 

k

 

p

 

( )

 

SNR

 

post

 

p k

 

,( )

 

Y p k

 

,( )

 

2

 

λ

 

w

 

k

 

( )⁄[ ]

 

1–=

 

Y p k

 

,( )

 

2

 

λ

 

w

 

k

 

( )

 

SNR

 

pr i or

 

p k

 

,( )

 

1

 

α

 

–

 

( )

 

P SNR

 

post

 

p k

 

,( )[ ] α

 

G p

 

1–

 

k

 

,( )[ ]

 

2

 

Y p

 

1–

 

k

 

,( )

 

2

 

λ

 

w

 

k

 

( )

 

-------------------------------------------------------------------------+=

 

P x

 

[ ]

 

x

 

=

 

x

 

0

 

>



 

The noisy speech is modeled ( [21],  [12]) as the sum of an AR process and a noise process: 
, where 

 

x(n)

 

 denotes the measured signal, 

 

s(n)

 

 the speech, and 

 

v(n)

 

 a zero-

mean white noise process with variance . Furthermore: ,

where 

 

w(n)

 

 is a zero-mean white Gaussian process with variance . The above two equations can
be written in state-space form (bold letters refer to matrices): 

 

(Eq 8)

 

From standard Kalman filtering theory, the state vector estimate may be found and from it,
the sample estimate at time instant 

 

n

 

 is then obtained by: .

 

4.4.1 Parameter Estimation

 

In  [12], it is assumed that  is known or computed using an extra microphone. The 

 

a

 

 vec-
tor (the AR parameters of speech) and  are calculated iteratively. That is, estimates  and ,
are calculated directly from the noisy observations using the Durbin algorithm and then substituted
into the appropriate Kalman filter. A new set of coefficients,  and , are calculated using the
filtered output and plugged into the filter. This procedure is iterated until a final set  and , is
obtained. Experimental results reported in  [12] found that this approach leads to good parameter
estimation during high SNR segments but performs poorly during low SNR frames and causes a
distortion at the filter output. In  [8], Higher Order Cumulants are used to estimate the speech
parameters. Experimental results found that the method is effective at low SNR conditions (5 dB)
when 4

 

th

 

-order cumulants are used. The parameter estimation was superior to using 2

 

nd

 

-order sta-
tistics and it was also found that the use of third order statistics is limited in effectiveness. 

 

4.5  Psychoacoustic-based Methods

Formant-based Spectral Shaping

 

The frequency domain postfiltering approach proposed in  [28] consists of approximating the 
noisy speech spectrum by LPC analysis and then modifying this spectrum (through frequency fil-
tering) so that the spectral 

 

formants

 

 are 

 

sharpened

 

 and the valleys deepened. The filter is ‘adapted’ 
for every new frame of speech (128 samples) and is represented by a set of DFT coefficients 

 

H(k)

 

. 
These coefficients are multiplied by a modified version of the speech transform 

 

P(k)

 

 to yield the 
transform of the enhanced speech. The core operation of the algorithm is to scan the LPC spectrum 
and detect the 3 or 4 main formants (and valleys) through 

 

peak picking

 

.

 

Exploiting the Characteristics of Human Hearing

 

These methods exploit frequency masking or other properties of the auditory system to gain 
an advantage in locating or attenuating noise bands or in preventing unnecessary attenuation in 
speech bands. In  [23] and [27], a cross-band masking threshold is used to control the spectral sub-
traction process. The idea is to find the best compromise between noise reduction and speech dis-
tortion in a perceptual sense. By identifying the bands where natural noise masking occurs, there is 
no need for an aggressive noise suppression.
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The algorithm proposed in  [5] uses the property of lateral inhibition of the auditory system.
It convolves the so-called function of spatial lateral inhibition with the power spectrum of the
noisy speech input to yield an estimate of the clean speech spectrum without apriori knowledge of
the noise spectrum. 

 

4.6  Higher-Order Statistics

4.6.1 Rationale and Challenges

 

Higher-order statistics (HOS) have shown promising results in such fields as radar, image 
processing, seismology, and array processing  [18] and are of particular value when dealing with a 
mixture of Gaussian and non-Gaussian random processes and system nonlinearity. Their key 
attractive features is their 

 

Gaussian blindness:

 

 The higher order cumulants of a Gaussian process 
are identically zero. Thus, given a speech signal 

 

s(n)

 

 corrupted by additive Gaussian noise 

 

g(n)

 

: 
, the higher order cumulants of 

 

s(n)

 

 are simply those of 

 

x(n)

 

: 

 

(Eq 9)

 

Analysis in the higher order domain is therefore a way of filtering out all Gaussian noise (both
white and colored). In spite of their attractive noise-suppression properties, the application of HOS
to speech processing has, in general, lead to mixed results. To make effective use of HOS, some
crucial issues need to be addressed: 

 

1.

 

The burden of proof and interpretation

 

: for the statement in Eq 9 to have a meaningful impli-
cation, the cumulants of the speech itself have to be non-zero. While this is in general true, 
one needs to consider specific speech domains to guarantee this non-zero condition. In addi-
tion, one needs a framework where the speech HOS are expressed in terms of useful speech 
attributes, such as energy, frequency, pitch, etc.

 

2.

 

 

 

Implementation issues and limitations

 

: The Gaussian-blindness feature of HOS is true only 
in a statistical sense. When analysis is done using only one realization and finite data records, 
issues related to the bias and variance of the HOS estimators need to be accounted for and fac-
tored into the algorithm. As an example, the detection of speech and noise can only be made 
in a probabilistic manner with a confidence interval. 

 

4.6.2 Some Reported Systems

 

In  [7], a speech enhancement system based on 3

 

rd

 

-order statistics is proposed and consists of 
time averaging the bispectrum then resynthesizing speech using a bispectrum-to-Fourier recon-
struction. The bispectrum is computed from the Fourier transform:

 .

and averaged over three consecutive segments to approximate statistical averaging. The authors
reported an SNR improvement of about 1 to 2 dB when the input SNR was below 6 dB, for both
white and color noise. The enhancer was more effective for voiced speech, where the enhancement
attained 2.7 dB, than in unvoiced speech, that was typically enhanced by 1 to 1.5 dB. 

In  [17], an algorithm for noise reduction based on optimal filters, subbands and higher-order
cumulants is proposed. A filter bank is used to subdivide the signal into narrow bands, and
enhancement is carried out in each of these using causal optimal filters and the 

 

p

 

 most recent sam-
ples. The key idea is to use the 4th-order statistics of the noisy speech to estimate the required
parameters for the enhancement filters, such as the SNR, the autocorrelation of speech and the
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probability of speech presence. The concepts are based on established properties of the higher-
order statistics of speech  [16]. For instance, it is shown that: 

• The normalized autocorrelation of speech may be estimated from the diagonal slice of the 

4th-order cumulant normalized by the kurtosis: .

• The probability that a band contains only noise is determined by the estimate of the kurtosis, 

scaled by the variance of the estimator: .

• In bands where speech and noise are present, an upper bound on the speech energy is 
derived from the kurtosis, from which a lower bound on the noise may be deduced. 

 

4.7  Methods that Exploit Spatial Noise Correlation

 

These techniques make use of one or more noise reference inputs (microphones) and attempt 
to subtract the noise component from the noisy speech signal. The primary microphone picks up 
the noisy speech signal while a set of secondary microphones measure a signal consisting mainly 
of noise. The signals from the secondary mics are fed to an adaptive filter which estimates the 
noise on the primary mic and simply subtract it from the transmitted speech (Figure 3). 

 

FIGURE 3.

 

A Two-input noise cancelling system. 

 

A number of filter structures and adaptation algorithms have been evaluated in the literature.
The technique however requires that the noise component in the corrupted signal and the reference
noise have a high coherence. Inside a passenger car, it was found  [11] that if two microphones are
located at a distance greater than 50 cm, the only coherent noise component is that of the engine.
In order to cancel 90% of the noise energy, the two mics cannot be more than 5 cm apart, which
makes it almost impossible to prevent speech from entering the noise reference. Furthermore,
when using a single noise reference it was shown  [9] that the noise cancellation has limited effec-
tiveness due to the nonstationarity of the noise process in the automobile. A single noise reference
will reduce the noise energy in the dominant band below 1000Hz where the noise in both mics are
strongly correlated but will enhance the noise in the band above 1000Hz where the correlation of
the noise as well as its energy is much lower.

In case where no speech contamination is present in the secondary reference, the filter con-
tinuously adapts the coefficient set in a way to minimize the power of the error 

 

e(n)

 

. It can be
shown  [29] that minimizing this error (even during speech) is equivalent to minimizing the power
of the noise, defined as . The adaptation algorithm may be based on any
gradient method, for example: , where  is the gradient of the mean
square of the output with respect to the coefficient vector . 
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The main limitations of the multi-sensor may be practical realization. Most hand held porta-
ble phones are designed to be very small in dimension and placing multiple microphones with
enough distance to have enough noise -but no speech- correlation between the sensors may prove
difficult. 
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The NR operation, in general, alters the spectral characteristics of the signal and may result 
in modifying the speech harmonic or its formant structure. Whenever NR is placed prior to encod-
ing or speech recognition, this may have an impact -positive or negative- on the operation of these 
applications, which rely on spectral analysis. On the other hand, whenever NR is placed at the 
landline side after the speech decoder, it may be affected, positively or negatively, by the way the 
mobile encodes the various speech and non-speech segments, by any additional operation that the 
user terminal may do, and by channel interference, handoffs and other network operations of the 
cellular network. 

 

5.1  Interaction W ith Speech Coders

 

•

 

Discontinuous Transmission (DTX)

 

: In some TDMA and GSM systems, a discontinuous 
transmission feature is implemented in order to save battery life and minimize interference. 
When no speech activity is detected at the mobile, transmission ceases and the landline 
decoder generates a so-called comfort noise to keep a seamless interruption in the output 
signal. While the comfort noise is based on the actual noise present, its spectral characteris-
tics may not be the same. As a result, an NR placed after the decoder at the landline end will 
be using a wrong reference to update its noise estimates. 

•

 

Variable Rate Coders

 

: in CDMA systems, variable rate speech coders are used in order to 
reduce interference by lowering the average transmission rate. During non-speech and 
unvoiced segments, the coding rate is dropped to 1/4 or 1/8. As a result, a similar problem as 
in the DTX case occurs when NR is placed at the landline side after the decoder, since the 
coding of speech and non-speech segments results in different spectral noise characteristics. 
Moreover, if NR were placed at the mobile prior to encoding, then the reduction of the noise 
will affect the decision of the rate determination algorithm (RDA). In the good cases, it will 
result in a lower average rate for transmission, which is always desirable. 

 

5.2  Interaction W ith the Cellular Network Operations

 

•

 

Handoff recovery

 

: handoffs in cellular networks cause a short interruption in the transmitted 
signal. If NR is placed at the landline side, then its input signal will temporarily drop to 
zero, causing an effective resetting of the internal memory of the algorithm. After handoff, 
the algorithm restarts from a zero initial condition and thus it is desirable that its conver-
gence rate be fast enough in order not to generate a very audible effect.

•

 

Channel interference and errors

 

: on analog cellular systems, channel interference may be 
viewed as an added source of acoustic noise. In digital cellular systems, channel errors 
cause the speech decoder to repeat or interpolate speech frames, adding sometimes a rever-
berant effect and sometimes adding a somewhat static noise effect. If NR is placed at the 



 

mobile end, then NR will have no effect on this added noise source. Placing NR at the land-
line side however, may have the added advantage of removing this added noise.

 

5.3  Placement of Noise Reduction in the Network 

5.3.1 At the Mobile/wireless T erminal: 

 

This results in removing the noise at the source, prior to encoding or recognition. In this sce-
nario, DSP complexity, battery requirements, and terminal cost are important issues that may 
impose constraints on the type of algorithm to use. In a hands-free application, NR may be imple-
mented in the external hardware, thus easing the complexity constraints, but also increasing the 
cost of the accessories. Other points to note here: 

• There is a better chance at estimating the noise, thus improving the effectiveness of Wiener-
like algorithms. The noise conditions are the same during speech and silence segments. 

• There is no adverse effect from DTX or variable rate coding. 

• This scheme cannot eliminate any channel or quantization noise from the network.

• NR may negatively impact the coder or speech recognition algorithms.

• There is the possibility of using multi-sensor techniques.

• In variable rate codecs, it will result in a lower overall rate, which is desirable for capacity. 

When removing the noise at the source, it is necessary to do so on the reverse link only. In a
mobile-to-mobile call, each terminal removes the noise at its end and the far end receives a clean
signal. 

 

5.3.2 At the W ireless / W ireline Infrastructure

 

In this scenario, noise reduction is placed in the switching center, thus shared by many indi-
vidual users, both wireline and wireless. Given the more available computational power, more 
sophisticated methods may be employed in this scheme. Worth noting points include:

• The scheme allows operators to provide noise reduction for those users that are currently 
using cellular phones that do have any built-in noise reduction such as AMPS phones, 
TDMA and GSM based phones.

• This methods poses more challenges since the speech is now encoded at the noisy end (ter-
minal) along with the noise and, given the non-linearity of speech coders, irreversible 
speech distortion may have resulted. 

• NR is directly affected by the RDA and DTX and some global optimization may be needed.

• It allows elimination of the noise introduced by channel errors, or any other network impair-
ments.

 

5.3.3 The Business Argument

 

There are three business reasons  [10] for placing the noise reduction functionality at the net-
work side, instead of the terminal: 

•

 

Handset Cost:

 

 the marketplace is driving the price points for cellular phones down to virtu-
ally zero, thus putting severe constraints on the amount of sophisticated technology that can 
be included in handsets. 



 

•

 

Who should pay: 

 

the main beneficiary of noise reduction is not the handset owner but the 
far-end party (as is the case for echo cancellation); therefore the owner has little immediate 
justification to spend more for a handset with more expensive noise cancellation included. 

•

 

Quality Consistency:

 

 the wireless operator can achieve a better overall service by providing 
noise reduction to all subscribers in the network (wireless, wireline, near and far-end) and 
thus a network-wide, network-consistent solution seems to be the proper way. 
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1.

 

Tradoff of complexity and performance

 

: can the algorithm be configured to operate with less 
computational power, and thus less precision and performance. 

 

2.

 

Psychoacoustics

 

: regardless of what theoretical concept the algorithm is built upon, it should 
factor in the effect of frequency and, ideally, time domain masking. 

 

3.

 

Performance

 

: how does the algorithm fair in ideal conditions, such as white stationary noise, 
and worse-case conditions, such as bable noise. What are the noise and the speech distortions, 
and are the latter function of noise characteristics (noise modulation).

 

4.

 

Fixed-point performance

 

: is the difference between the fixed and floating point performance 
significant. Does the algorithm conceptually require high dynamic range to ensure good per-
formance or stability. 

 

5.

 

Interaction with codecs

 

: if placed prior to encoding, how does the algorithm affect the quality 
of the coded speech or the operation of the rate determination algorithm in a variable rate 
coder. If placed after the decoder at a centralized place in the network, how is it affected by 
any DTX operation or the variable rate coder or any other operation performed at the mobile 
set or in the network. 

 

6.

 

Convergence speed

 

: how quickly does the algorithm converge when the noise characteristics 
abruptly change or when any operation in the network (e.g., handoff) cause temporary inter-
ruption of the signal. 

 

7.

 

Quality vs. intelligibility

 

: does the algorithm make a good compromise between the two. What 
is the impact on intelligibility in best and worst case scenarios. What phonemes are affected 
the most. 

 

8.

 

Transparency

 

: does the algorithm disengange itself when the situation is such that it is not 
required or is not effective (in very clean speech, or in extremely poor signal conditions).

 

9.

 

Multiple concepts

 

: is the algorithm based on classical or new theories, or a mixture of both. 

 

10.

 

Uplink vs. downlink

 

: is the performance highly contingent on the placement in the network, or 
does the algorithm have an adaptive way to adjust its operations. 
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7.1  Proprietary Aspects

 

While spectral subtraction as a 

 

concept

 

 is a public domain technique, there are a number of 
variations and implementation aspects of this methods that have been patented. For example, the 
methods for estimating the noise or computing the filter coefficients, or smoothing the SNR or 
spliting the signal into bands, etc... The following are some examples of proprietary techniques.

 

7.2  Patents Based on Spectral Subtraction/Scaling

How subtraction / scaling is done

 

• In Motorola’s  [31], spectral scaling with subbanding is used. The scaling is applied in the 
frequency domain, thus involving an FFT/IFFT of 128 points. FFT bins are mapped to 16 
non-homogenous bands roughly following a Bark scale.

• In Nokia’s  [32] [33], an FFT is used for spectral analysis. In addition, the formant locations 
are estimated so that speech within the formants is attenuated less that the part in between. 

• In Ericsson’s  [30], attenuation is applied in the time domain on the entire frame (no sub-
banding) and is function of the estimated noise level. 

 

Filter gains computation

 

• In Motorola’s, the amount of band attenuation is a non-linear function of the estimated SNR 
in this band and the total noise energy in the frame. The scaling function does not resemble 
any of the classical/published optimal filters and is a proprietary feature of the algorithm. 

• In Ericsson’s, the attenuation function is a logarithmic function of the noise level (not the 
SNR) relative to a preset threshold, below which no attenuation is deemed required. The 
attenuation function however is different whether speech is detected in that frame or 
whether it is purely a noise frame. 

 

Noise estimation

 

• In Motorola’s, noise estimation is done during silence/stationary segments. Silence is 
detected by summing the SNRs across the 16 bands into a so-called voice metric, and com-
paring it to a threshold. Prior to summing, the SNRs are first quantized according to a 
roughly exponential mapping. The other instance for updating the noise is during stationary 
conditions, detected whenever the short term energy of each band within the frame is close 
to the long-term energy average.

• In Nokia’s, noise is estimated during speech. Each of the QMF filter passbands is further 
split in two sub-bands using a special filter. The filters passbands are such that only one of 
them will capture speech harmonic, while the other contains only the noise (or whatever is 
in between the two consecutive harmonic peaks). The method thus claims to be superior 
since it can better keep track of noise changes during speech periods.

 

Artifacts removal 

 

• In Motorola’s this is done by detecting very weak frames, and scaling them by the minimum 
gain (0.17). In addition, sudden noise bursts are detected by counting the number of bands 



 

where the SNR exceeds a given threshold; The argument is based on the fact that in voiced 
speech, a large number of bands have a high SNR whereas sudden noise burst frames are 
characterized by a large SNR in only a few bands. 

• In Nokia’s, the random flutter effect is avoided by not updating the filter coefficients during 
speech periods. This is effective but likely to result in a poor convergence of the filter gains 
during changing noise and speech conditions. 
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