
6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

Parallel Implementation of Adaptive Bi-directional
Motion Estimation based on Texture Analysis

Teddy Surya Gunawan, Stephanus Suryadarma Tandjung, Chong Man Nang

School of Computer Engineering, Nanyang Technological University
Singapore 639798

teddy@sentosa.sas.ntu.edu.sg, steph@ieee.org

Abstract Various motion algorithms have been
developed for various applications such as image sequence
analysis, machine vision, robotics, motion picture
restoration or video coding. In this paper, the parallel
implementation of bi-directional motion estimation (ME)
algorithm on Myrinet-connected workstations is
presented. The bi-directional ME is based on texture
analysis of the frame difference signals. Texture analysis is
adopted here to reduce the computational loads of ME
without compromising on the motion vectors quality. The
bi-directional scheme and half-pixel search are employed
to achieve higher picture quality. The performance of the
proposed ME is compared with the classical motion
algorithms on four HDTV video sequences.

Keywords Adaptive motion estimation, Myrinet-
connected workstations, Parallel algorithms, Texture
analysis, HDTV

1. INTRODUCTION

Various motion algorithms have been developed
for various applications such as image sequence
analysis, machine vision, robotics, motion picture
restoration or video coding [13]. Motion estimation
(ME) obtains the motion field between the reference
frame and the current frame.

The ME algorithm is computationally expensive
and the cost increases exponentially with the image size
[3, 5, 17]. Various fast algorithms [13] have been
proposed to reduce the computational load. However,
the conventional fast methods often converge to a local
minimum due to their intrinsic selective nature. The
information extracted from the texture analysis of the
frame difference signal can be used to alleviate these
deficiencies [1, 2, 8, 9, 10].

ME algorithms can be carried out using special-
purpose hardware [17]. However, a software solution
using general-purpose computing platforms is more
available. Exploring new ME algorithms is an active
area of research, and software solutions have the
flexibility to allow experimentation with such
algorithms. In addition, instead of using single-
processor or sequential computers, parallel computers
can be used to distribute the computational load to
achieve higher throughput.

A software-based implementation of ME algorithm
on multiple processors requires an� efficient
parallelization scheme. Parallel video encoding and

decoding algorithms, which include ME algorithms,
have been reported in [16, 17, 18, 19]. A motion
compensation scheme for HDTV video encoder has
been reported in [5] based on the block layer picture
partitioning. Parallel MPEG-1 video encoding
implemented on Ethernet-connected thirty workstations
has been documented in [8]. An implementation of
MPEG-2 video encoder on parallel and distributed
systems is described in [13]. However, each parallel
system has its unique communication and computation
characteristics and investigation need to be carried out
for the design of more efficient parallel ME algorithms.

This paper describes the parallelization scheme on
Myrinet-connected workstations. The overview of ME
algorithm based on texture analysis is presented in
section 2. The parallel implementation of ME algorithm
and the computing surface are described in Sections 3
and 4. Section 5 presents our experimental results, while
the last section concludes the work to date.

2. INTERFRAME TEXTURE ANALYSIS AND

ADAPTIVE ME ALGORITHMS

Texture is one of the important characteristics used
in identifying objects or regions of interest in still
images, and it can be defined by a set of statistics
extracted from the local picture property [20]. The
texture analysis of the frame difference signals provided
to ME algorithms have been proposed in the literature
[1, 2, 8, 9, 10]. However, of the various approaches, the
method proposed in [1] is chosen because of it reduces
the computational load without compromising on
motion vectors quality. In an attempt to achieve higher
picture quality, the bi-directional approach [14] is
applied in our implementation of the ME algorithm
presented in [1].

The temporal difference histogram is derived from
the absolute difference of the gray level values between
pairs of pixels belonging to successive frames (g1(x, y,
t1) and g2(x, y, t2)) of video sequence.

A pixel displacement from the previous frame by
∆x and�∆y, is represented by δ=(∆x, ∆y) and called the
intersample spacing vector.

For a particular value of δ, the absolute temporal
difference function fδ(x, y) is given by:

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

() () ()���� ����� W\\[[JW\[J\[I ∆+∆+−=δ (1)

The temporal difference histogram, pδ is then defined as
the probability density of fδ(x, y), as shown below:

() ()

() ()
()

≠
=

=

= ∑ ∑
−

=

−

=

L\[ILI
L\[ILI\[K

\[K11LS
���

�

���

���

��
���

��
�

�

�

�

δ

δ

δ

(2)

where Nx and Ny are the number of pixels in the x and y
direction respectively.

Of the various features that can be derived from the
temporal difference histogram, the contrast and inverse
difference moment were chosen in [1]. For a block size
of N×N pixels, with M-level quantization resolution, the
temporal contrast, TCON, is defined as the moment
inertia of pδ around the origin, given by:

()∑
−

=
=

	

�
�

LSL7&21 δ (3)

TCON gives a quantitative measure for the coarseness
of the texture and its value depends on the amount of
local variations present in the block. TCON must be
normalized by a measure corresponding to the size and
texture of the moving object. Hence, local contrast,
LCON is employed.

()[]∑ −=
���

J\[J0$/&21 ���
(4)

where J is the average gray value of the moving area,

MA, within the pixel block. Based on the temporal and
local contrast (Eq. (3) and Eq. (4)), a good estimate of
the average motion speed, S, within a block can be
defined as:

/&21
7&21N6 = (5)

where k is a constant with empirically selected values.
Large values of S are expected in fast moving objects
with uniform texture, vice versa.

The inverse difference moment, IDM, is a measure
of homogeneity of an image and is given by:

()∑
−

= +
=

�

�
��

�

� L
LS,'0 δ (6)

IDM is used to identify the principal texture
direction. Texture directionality can be analyzed by
comparing spread measures of pδ for various directions
of δ, as shown in Fig. 1. The IDM can be used to
estimate the directionality of the texture. The maximum

value of IDM indicates that the frame difference signal
is more homogeneous in that direction than others.

Fig. 1. The intersample spacing vectors

For each block, nine temporal difference
histograms, pδi with i = 0, 1, …,8 were obtained. The δi

grid is shown in Fig. 1, where d is the intersample
spacing distance (ISD). The TCON and LCON are
calculated from the pδ0 histogram, using (3) and (4). The
IDM values are calculated from the rest of pδi

histograms. The motion speed, S, is calculated using (5)
with k=3. Then the minimum and maximum
displacements, MinDisp and MaxDisp, can be calculated
empirically as:

()

 4

 if

 if

0D['LVS0LQ'LVS
6
660D['LVS

=

>
=+

= ��
�������

(7)

The maximum value of the IDM is computed to find the
texture directionality. That is:

{ } ����������PD[��� � == L,'0,'0 � δ (8)

Fig. 2. Search area defined by the adaptive algorithm: (a) For
vertical motion upwards, (b) For diagonally motion to
northeast

If IDMmax corresponds to a vertical or a horizontal
direction, let the search length towards this direction be
equal to MaxDisp and the search widths towards any
other direction be equal to MinDisp, as shown in Fig. 2.
Here the search area changes adaptively, in size and
shape, depending on the value of the speed, S, and the
direction resulted from the inverse difference moment,
IDM.

To further reduce the prediction error between the
original image and the motion compensated image, the
half-pixel search is implemented. Moreover, to alleviate
prominent problems in the ME algorithms, such as
occlusion and scene changes, bi-directional motion

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH
estimation (BME) is employed, as shown in Fig. 3. In
this algorithm, three frames are used, including one
preceding frame and one succeeding frame, to find a
match between current frame and reference frame. The
texture analysis is done on two temporal difference
frames, as shown in Fig. 3.

Fig. 3. Bi-directional ME based on texture analysis

3. THE PARALLEL IMPLEMENTATION

In order to achieve a scalable parallel
implementation of the ME algorithms, we used the data-
parallel or single program multiple data (SPMD)
programming model. A single program was written for
all processors that asynchronously execute this program
on their local pieces of data. Communication of data and
synchronization was done through message passing
using MPICH [6] over GM [4] parallel programming
environment. The mapping of the ME algorithm based
on texture analysis is shown in Fig. 4.

Fig. 4. Mapping of parallel texture ME algorithms

Fig. 4 shows that the interprocessor
communications involved in parallel ME algorithms are
the partition and sending of frame data and the
collecting of motion vectors results to the master node.
In our approach, a frame of size P×Q is partitioned into
rectangular tiles of equal size M×N, and each slice is
assigned to one processor.�The MPI_Scatterv() function
[6] was found to be the least communication time
required to distribute the frame data, thus, this function
is used in the implementation. Moreover, instead of
transferring motion vectors results individually, these
results are collated into a buffer and sent as a single
message to the master node. Hence, the interprocessor
communication time required is minimized.

4. SYSTEM CONFIGURATION

The equipment used in our experiments is a cluster
of 8 Linux workstations (with Intel Pentium II 450 MHz
processor and 384 MB RAM) running Linux Redhat 6.0
with MOSIX 0.95 [7]. Each node has a single Myrinet
M2F-PCI32 network interface card on the PCI bus 32
bit, containing 1 MB SRAM card memory and a 37.5
MHz “LANai” processor [4]. The machines are
interconnected with one 8-port Myrinet switch M2F-
SW8 through M2F-CB-10 Myrinet cables.

In this research, we use MPICH v1.1.2 on top
Myrinet’s GM v1.1.2 message passing library. MPICH
is a public domain MPI [6] implementation developed at
Argonne National Libraries and Mississippi State
University. We configure MPICH over GM source
using the “ � ��� �����
	����������������� ��������������� ” option.

5. EXPERIMENTAL RESULTS

Experiments were carried out using the computing
resources described. In this research work, we used
four HDTV (1920×1080 pixels) video sequences, as
shown in Fig. 5, including “basketball”, “flag”, ”man”,
and “house” sequence. These sequences are
representative of different kind of motion and are very
useful for testing the capability of ME algorithms. To
compare the performance, three ME algorithms were
parallel implemented, namely, block-based ME, ME
based on texture analysis [1] (TME), and bi-directional
ME based on texture analysis (BTME).

The measured computation time (parallel
execution time) was averaged over n frames of each
video sequence (n=30 for basketball sequence, and n=40
for the others). The time to process n frames of a video
sequence was not necessarily the same in each
processor, therefore the average was also taken over all
the video sequences. All the timings were measured
with microsecond precision using MPI_Wtime()
function [6].

We used the macroblock size of 16×16 pixels and
the search area adaptively defined by texture analysis of
the frame difference signals. The average values of
PSNR and Entropy obtained for different sequences
over n frames of the three parallel motion algorithms are
shown in Fig. 7 and Fig. 8, respectively.

As described in [1], an important parameter that
affects the performance is the intersample spacing
distance value (d value). To find the best d values for
particular sequence, various d values from 1 to 10 were
experimented. The type of motion for particular
sequence affects the best d value achieved, as shown in
Fig. 6.

Note that there is no performance loss due to
parallelization since, in our programming model, the
ME algorithm in each processor uses the same
computational logic that is used in the sequential
version. Therefore, the magnitude of PSNR is
dependent on the ME algorithm itself.

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

Table 1 and Table 2 show the speedup and the
frame rate of the three ME algorithms implemented for
the various HDTV video sequence. The linearly
increasing speedup shows that use of more processors
will result in greater speed of processing a frame.
Although that there is not much improvement in the
motion vector results for the TME and BTME
algorithm, but we can see that the frame rate is higher.
The frame rates of TME and BTME algorithm are faster
17 and 8 times respectively than the frame rate of ME
algorithm. Nevertheless, there will always a tradeoff
between the high quality picture and the speed of
computation.

6. CONCLUSIONS

We have presented the implementation and
performance comparison of adaptive bi-directional ME
algorithm based on texture analysis on Myrinet-
connected workstation. Four HDTV test video
sequences were used for assessing the performance of
parallel implementation of the three ME algorithms,
namely ME, TME, and BTME. The performance was
evaluated in terms of speedup and frame rate. Moreover,
the picture quality in terms of PSNR and Entropy was
presented. As expected, the parallel BTME achieved
higher frame rate with reasonable picture quality
compared to other algorithms.

REFERENCES

[1] V. E. Seferidis and M. Ghanbari, “ Adaptive Motion
Estimation Based on Texture Analysis” , IEEE Trans.
on Comm., Vol. 42, pp. 1277-1287, April 1994.

[2] V. Seferidis and M. Ghanbari, “ Use of Co-occurrence
Matrices in the Temporal Domain” , Electronics
Letters, Vol. 26, No. 15, pp. 1116-1118, July 1990.

[3] F. Bellifemine, A. Chimienti, R. Picco, “ Evolution and
trends of HDTV,” in CompEuro ‘91Advanced Comp.
Tech., pp. 155-163, 1991.

[4] N.J. Boden, D. Cohen, R.E.Felderman, A.K.Kulawik,
C.L.Seitz, J.N.Seizovic, and W-K.Su, “ Myrinet : a
gigabit-per-second Local Area Network,” IEEE Micro,
15(1):29-36, February 1995.

[5] T.S. Gunawan, S.S.Tandjung, M.N.Chong,
"Performance of the Communication Layer with the
Myrinet Gigabit LAN for HDTV Images on Pentium-
Linux cluster using MPI", in Proceeding IECI
MULNET 2000, pp. 255-259, April 2000

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, MIT
Press, Cambridge, MA, 1994.

[7] A. Barak, S. Guday, and R.G. Wheeler, The MOSIX
Distributed Operating System : Load Balancing for
UNIX, in Lecture Notes in Computer Science, Vol.
672, Springer-Verlag, 1993.

[8] K. Otsuka, T. Horikoshi, S. Suzuki, and M. Fujii,
“ Feature extraction of temporal texture based on
spatiotemporal motion trajectory” , in Int. Conf. on
Pattern Recog., Vol. 2, pp.1047-1051, August 1998.

[9] K. Otsuka, T. Horikoshi, and S. Suzuki, “ Image
velocity estimation from trajectory surface in
spatiotemporal space” , Proc. CVPR’97, pp. 200-205,
1997.

[10] M. Szummer and R. W. Picard, “ Temporal texture

modeling” , in Int. Conf. on Image Proc., Vol. 3, pp.
823-826, Sept. 1996.

[11] S.S.Tandjung, T.S.Gunawan, M.N.Chong, “ Motion
estimation using adaptive matching and multiscale
methods” , in Int. Conf. On Visual Comm. and Image
Proc., June 2000.

[12] S.S.Tandjung, T.S.Gunawan, M.N.Chong, “ Motion
estimation using adaptive blocksize observation model
and efficient multiscale regularization” , in Int. Conf. on
Image Processing, September 2000.

[13] F. Dufaux, F. Moscheni, “ Motion estimation
techniques for digital TV : a review and a new
contribution,” in IEEE Proceeding, Vol. 83, pp. 858-
876, June 1995.

[14] S. Kalra, M. N. Chong, “ Bidirectional motion
estimation via vector propagation,” IEEE Trans.
Circuits and Systems for Video Technology, Vol. 88,
pp. 976-987, Dec. 1998.

[15] J. Konrad, “ Motion detection and estimation,” in
Image and Video Processing Handbook (A. Bovik,
ed.), chap. 3.8, Academic Press, 1999.

[16] Ioannis Pitas, Parallel Algorithms for Digital Image
Processing, Computer Vision and Neural Networks,
John Wiley & Sons, 1993.

[17] Charng. L. Lee, “ Parallel implementation of motion-
compensation for HDTV video decoder,” in Proc. of
1997 IEEE Int. Symp. on Consumer Electr., pp. 51-54,
1997.

[18] Jongho Nang, Junwha Kim, “ An effective parallelizing
scheme of MPEG-1 video encoding on ehernet-
connected workstations,” in Proceedings Advances in
Parallel and Distributed Computing, pp. 4-11, 1997.

[19] Shahriar M. Akramullah, Ishfaq Ahmad, and Min L.
Liou, “ Performance of software-based MPEG-2 video
encoder on parallel and distributed systems,” in IEEE
Transactions on Circuits and Systems for Video
Technology, Vol. 7, no.4, pp 687-695, August 1997.

[20] Adrian Low, Introductory Computer Vision and Image
Processing, McGraw-Hill, 1991.

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

(a) Basketball (b) Flag

(c) Man (d) House

25

27

29

31

33

35

37

39

41

43

1 2 3 4 5 6 7 8 9 10

Intersample displacement (d)

P
S

N
R

 (
d

B
)

Basketball
Flag
Man
House

Fig.5. The HDTV video test sequences Fig. 6. Average PSNR of the motion compensated pictures for
different values of the intersampling spacing distance (d)

25

27

29

31

33

35

37

39

41

43

Basketball Flag Man House

HDTV Video Test Sequence

P
S

N
R

 (
d

B
)

Parallel ME

Parallel TME

Parallel BTME

0

2

4

6

8

10

12

Basketball Flag Man House

HDTV Video Test Sequence

E
n

tr
o

p
y

(b
it

s)

Parallel ME

Parallel TME

Parallel BTME

Fig. 7. The average PSNR for various sequence Fig. 8. The average Entropy for various sequence

Table 1. Speedup for various number of processors
Parallel ME Parallel TME Parallel BTMEVideo

Sequence 1 2 4 8 1 2 4 8 1 2 4 8
Basketball 1 1.96 3.95 7.90 1 1.97 3.89 6.97 1 1.92 3.80 7.37
Flag 1 1.99 3.94 7.77 1 1.98 3.72 7.22 1 1.96 3.68 7.15
Man 1 1.93 3.87 7.79 1 1.96 3.84 7.40 1 1.93 3.80 7.40
House 1 1.94 3.87 7.59 1 1.90 3.74 6.81 1 1.87 3.70 6.76

Table 2. Frame rate over various numbers of processors (frame/seconds)
Parallel ME Parallel TME Parallel BTMEVideo

Sequence 1 2 4 8 1 2 4 8 1 2 4 8
Basketball 0.004 0.009 0.017 0.035 0.069 0.136 0.268 0.480 0.035 0.067 0.134 0.259
Flag 0.005 0.010 0.019 0.037 0.064 0.126 0.237 0.460 0.032 0.063 0.119 0.232
Man 0.005 0.009 0.017 0.035 0.058 0.113 0.221 0.426 0.029 0.056 0.110 0.215
House 0.004 0.009 0.017 0.034 0.063 0.121 0.237 0.432 0.032 0.060 0.119 0.259

