
6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

An Efficient Parallelization Scheme of Motion Estimation
Algorithms on Myrinet-connected Workstations

Teddy Surya Gunawan, Stephanus Suryadarma Tandjung, Chong Man Nang

School of Computer Engineering, Nanyang Technological University
Singapore 639798

teddy@sentosa.sas.ntu.edu.sg, steph@ieee.org

Abstract Motion algorithms have been developed for
various applications such as image sequence analysis,
machine vision, robotics, motion picture restoration or
video coding. Motion estimation requires high processing
requirements to estimate the image sequence with a
reasonable frame size and quality. In this paper, we
present an efficient parallelization scheme of motion
estimation algorithms on Myrinet-connected workstations.
Results indicated that using the proposed parallelization
scheme, almost linear speedup curve could be achieved for
four HDTV test video sequences experimented, indicating
that if more processors are involved, less time will be
required to process a frame.

Keywords Motion estimation, Myrinet-connected
workstations, Parallel algorithms, HDTV image sequence

1. INTRODUCTION

In recent years, there has been a growing interest
in the area of image sequence processing especially
video coding and video restoration. Motion estimation
plays an important role in video coding and video
restoration [1, 4, 10, 11]. Motion estimation obtains the
motion compensated prediction by finding the motion
field between the reference frame and the current frame

Motion estimation algorithm can be carried out
using special-purpose hardware [5, 10]. However, a
hardware-based approach has certain disadvantages.
First, it is usually very expensive and ordinary users
cannot afford it. Second, a hardware-based solution is
less flexible and can become obsolete. Third, it is often
optimized for a particular algorithm, and thus does not
allow exploration of other present and future algorithms.
Therefore, in order to overcome those disadvantages, a
software-based solution is used.

A software solution using general-purpose
computing platforms is more available. Furthermore,
exploring new motion estimation algorithms is an active
area of research, and software solutions have the
flexibility to allow experimentation with such
algorithms. However, the motion estimation algorithm
has very high computation requirements especially
when the image size is large, i.e. HDTV [3, 5, 14] size,
or high quality is required. Therefore, instead of using
single-processor or sequential computers, parallel
computing is a promising solution for video coding and
motion picture restoration.

A software-based implementation of motion
estimation algorithm using multiple processors requires
an efficient parallelization scheme. There have been
some previous approaches [5, 8, 10, 12, 13, 17] on
parallel video encoding and decoding, which includes
motion estimation algorithms. A motion compensation
for HDTV video encoder has been reported in [5] based
on the block layer picture partitioning. Parallel MPEG-1
video encoding implemented on Ethernet-connected
thirty workstations has been documented in [8]. An
implementation of MPEG-2 video encoder on parallel
and distributed systems is described in [13]. However, a
parallel system has its communication and computation
characteristics, in which the implementation of parallel
algorithm on that particular system is still an active area
of research.

This paper describes the parallelization scheme of
motion estimation algorithms on Myrinet-connected
workstations. The overview of motion estimation
algorithms, include block-based motion estimation
(ME), bi-directional ME (BME) and bi-directional
hierarchical ME (BHME), are presented in section 2.
Data distribution strategy and the parallel
implementation of motion estimation algorithm are
described in section 3. Section 4 describes the parallel
platform. Section 5 includes experimental results, while
the last section concludes the paper.

2. MOTION ESTIMATION ALGORITHMS

A number of very different motion estimation
algorithms have been proposed in the literature.
Detailed reviews are given by [1], [4], [6], [9], [18],
[14], [19], [20]. These algorithms have been developed
for various applications such as image sequence
analysis, machine vision, robotics, image sequence
restoration or image sequence coding.

Block-based motion estimation (ME) techniques
are based on the minimization of a disparity measure. In
order to alleviate prominent problems in the motion
estimation algorithms, such as occlusion and scene
changes, bi-directional motion estimation (BME) is
employed. In this algorithm, three frames are used,
including one preceding frame and one succeeding
frame, to find a match between current frame and
reference frame.

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

Hierarchical methods in motion estimation have
been quite successful [1, 9, 14]. This algorithm is done
recursively from higher layer to lower layer of the
pyramids. The matching criterion used is:

() () ()

()��

��××
��

��

�

��

�
���

=≤≤−

++−= ∑∑
−

=

−

=
−

O'\['

YMXL,ML,10\[0$'

��

�

�

�

�
	�	��

where Il,k(i,j) is the intensity of pixel at location (i,j)
within the block in the kth frame at the lth level and the
displacement is (u,v). I0,k(i,j) is the intensity of pixel on
the full resolution image. 0× and

�
 are height and

width of a macroblock at level l, respectively. M and N
are height and width of a macroblock at level 0. Notice
that � ��

= and ��� ��
= .

Using two times the motion vector found at level l-
1 for level l as an initial vector, the motion vectors for
level l are refined by using full search but with a
relatively small search range. If the motion vector at
level l-1 is represented by Vl-1(x,y), the detected motion
vector at level l can be described as

() () () ()������������������ �� =∆+= −− OYX9\[9YX9 ��� δδ

where ()����� δδ ��−∆ is the updated increment of motion

vector at level l-1 and is given below:

()

() ()
��

��
××

�PLQDUJ�

��
�����

��

��

�

=≤≤−

++++−++

=∆

−−

−−−

−

=

−

=
− ∑∑

O'YX'
YYMXXL,YMXL,

10YX9

!!
"!"!

#

$

%

&
!

δδ
δδ

δδ

Moreover, in order to further reduce the prediction error
between the original image and the motion compensated
image, the half-pixel search is implemented. The image
with half pixel resolution is generated by interpolation
from the original image, as follows:

() () ()()
() () ()()
() () () ()(

()) ()��
������������

��������
��������

+++
++++=++

++=+
++=+

YX6
YX6YX6YX6YX6

YX6YX6YX6
YX6YX6YX6

where u, v are the integer pixel horizontal and vertical
coordinates, while S is the pixel intensity value.

The BME algorithm doubles the computational
load by estimating backward and forward motion
vector. To reduce the computation, we integrate BME
and HME algorithms, called bi-directional hierarchical
motion estimation (BHME). It has the advantage of
handling such an occlusion problem while it reduces the
complexity of motion vector estimation.

3. THE PARALLEL IMPLEMENTATION

In order to achieve a scalable parallel
implementation of the motion estimation algorithms, we
used the data-parallel or single program multiple data
(SPMD) programming model. A single program was
written for all processors that asynchronously execute
this program on their local pieces of data.
Communication of data and synchronization was done
through message passing using MPICH [7] over GM [2]
parallel programming environment.

The mapping of the ME algorithm is shown in Fig.
1, particularly for BHME algorithms (two other
algorithms follow the mapping strategy described in
Fig.1). The parallel programs start with initialization at
every node, in which the computing environment for
message-passing model is prepared. A frame of HDTV
image is partitioned (using column stripe partitioning
scheme [5]) and distributed to P processors. Laplacian
pyramid is performed for each task to construct two
lower resolutions of the original images. To produce
motion vectors, the motion estimation is performed on
each processor. Each processor sends motion vectors
result to master processor. Finally, motion
compensation in the master node is done to reconstruct
the original image.

Fig. 1. Mapping of parallel motion estimation algorithms

For efficient parallel computing, the design of
distributed data structures are of particular importance.
This design should be made with a view to balance the
computational load on individual processors and to gain
maximum parallelism of interprocessor data
communications. As a communication interface, we use
Myrinet that can operate at 1.28 Gbit/s [2], and can
transfer message 4.98 times faster than the Ethernet
[21]. Basically, Myrinet is just like Ethernet. It is an
add-on PCI card. Myrinet has its own driver in order to
operate properly. This driver is bypassing the operating
system call, so that it will not interrupt the operating
system, and also will not interrupted by the operating
system. In that scheme, it is possible to minimize the
latency needed to send a message among processors, so
that we can achieve higher data rate.

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

Fig. 1. shows that the interprocessor
communications involved in parallel ME algorithms are
the partition and sending of frame data and the
collecting of motion vectors results to the master node.
In our approach, we optimize those interprocessor
communications to achieve maximum parallelism
possible.

In our approach, a frame of size P×Q is partitioned
into rectangular tiles of equal size M×N, and each slice
is assigned to one processor.� The MPI_Scatterv()
function [7] was found to be the least communication
time required to distribute the frame data, thus, this
function is used in the implementation. Other
interprocessor communication involved in motion
estimation algorithm is the collection of the motion
vectors result from slave nodes to master node. Instead
of sending each motion vectors result directly to master
node, we propose a scheme as shown in Fig. 2 to
minimize the interprocessor communication time.

Fig. 2. The interprocessor communication scheme for sending
the motion vectors results to master node

In this scheme, instead of transferring motion
vectors results individually, these results are collated
into a buffer and sent as a single message to the master
node. Hence, the interprocessor communication time
required is reduced from the total number of blocks in
one frame into the number of processors involved in the
parallel process.

4. SYSTEM CONFIGURATION

The experimental apparatus is a cluster of 8
computers (with Intel Pentium II 450 MHz processor
and 384 MB RAM) running Linux Redhat 6.0 with
MOSIX 0.95 [16]. Each computer has a single Myrinet
M2F-PCI32 network interface card on the PCI bus 32
bit-33 MHz, containing 1 MB SRAM card memory and
a 37.5 MHz “LANai” processor [2]. The 8 computers
are interconnected with one 8-port Myrinet switch M2F-
SW8 through M2F-CB-10 Myrinet cables.

In this research, we use MPICH v1.1.2 on top
Myrinet’s GM v1.1.2 message passing library. MPICH
is a public domain MPI [7] implementation developed at
Argonne National Libraries and Mississippi State

University. We configure MPICH over GM source
using the “ � ��� �����
	����������������� ��������������� ” option.

5. EXPERIMENTAL RESULTS

Experiments were performed on the computing
environment described in the previous section, using
various numbers of processors. In this research work,
we used four HDTV video sequences, including
“basketball”, “flag”, ”man”, and “house”. These
sequences are representative of different kinds of
motion and are very useful for testing motion
estimation.�The frames of the four-video sequences are
displayed in Fig. 3. All the sequences are of the HDTV
image size (1920×1080 pixels).

The measured computation time (parallel
execution time) was averaged over n frames of a video
sequence (n=30 for basketball sequence, and n=40 for
the others). The time to process n frames of a video
sequence was not necessarily the same in each
processor, therefore the average was also taken over all
the processors. Moreover, all of the timings were
measured with microsecond precision using
MPI_Wtime() function.

We used the macroblock size of 16×16 pixels and
the search area of 32×32 pixels. The exhaustive search
is employed to achieve the best picture quality. In order
to measure the quality of the video, we used the peak
signal-to-noise ratio (PSNR) and entropy. The average
values of PSNR obtained for different sequences over n
frames of the three parallel motion algorithms are
shown in Table 1. Of the three algorithms, the BME
algorithm was found to have the highest quality.
However, the kind of motion of the sequence does affect
the results, in which the sequence that has low motion
activity tends to achieve high PSNR.

Note that there is no performance loss due to
parallelization since, in our programming model, the
motion estimation algorithm in each processor uses the
same computational logic that is used in the sequential
version. Therefore, the magnitude of PSNR is
dependent on the motion estimation algorithm itself.

Fig. 4, Fig. 5, and Fig. 6 show the speedups of the
three motion estimation algorithms for the various
HDTV video sequence. The linearly increasing curves
for the modules show that use of more processors will
result in greater speed of processing a frame. However,
results show that different sequence has different
speedup. Clearly, the findings indicate that the kind of
motion has an effect to the speed of processing, in
which the sequence that has low motion activity, i.e.
“house” sequence, requires smaller processing time,
vice versa. Thus, the speedup is affected by the kind of
motion.

We notice also that all three parallel motion
estimation algorithms implemented in this work have a
comparable speedup. The interprocessor communication
scheme proposed in section 3 tends to minimize the
ratio of the communication time to the total computation
time. Therefore, we can achieve almost linear speedup

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH
curve for all three algorithms implemented, indicating
that if more processors are involved, less time will be
required to process a frame.

Finally, table 2 shows the frame rate using various
numbers of processors. It shows that as the number of
processors increases, the parallel motion estimation
system is able to process more frames per second. The
parallel BHME achieved higher frame rate with
reasonable picture quality compared to other algorithms.

6. CONCLUSIONS

We have presented the implementation and
performance of parallel motion estimation algorithms on
Myrinet-connected workstation. Harnessing the
communication power of Myrinet, three algorithms
were implemented including ME, BME, and BHME.
However, the interprocessor communication scheme
involved in motion estimation algorithms, such as
sending a frame data and collecting motion vectors
results, need to be carefully designed to minimize the
communication overhead.

Four HDTV test video sequences were used for
assessing the performance of parallel implementation of
the three motion estimation algorithms. The
performance was evaluated in terms of speedup and
frame rate. Moreover, the picture quality in terms of
PSNR and Entropy was presented. Almost linear
speedup curve was achieved for all three parallel
implemented algorithms. One possible conclusion is
that the interprocessor communication scheme proposed
has successfully contributed to the results achieved.

REFERENCES

[1] M. Bierling, “ Displacement estimation by hierarchical
blockmatching,” SPIE Visual Comm. Image Process.,
Vol. 100, pp. 942-951, 1988.

[2] N.J. Boden, D. Cohen, R.E.Felderman, A.K.Kulawik,
C.L.Seitz, J.N.Seizovic, and W-K.Su, “ Myrinet : a
gigabit-per-second Local Area Network,” IEEE Micro,
Vol. 15, pp. 29-36, February 1995.

[3] F. Bellifemine, A. Chimienti, and R. Picco, “ Evolution
and trends of HDTV,” in CompEuro ’91 Advanced
Comp. Tech., pp. 155-163, 1991.

[4] S. Kalra, M. N. Chong, “ Bidirectional motion
estimation via vector propagation,” IEEE Trans.
Circuits and Systems for Video Tech., Vol. 88, pp. 976-
987, Dec. 1998.

[5] Charng L. Lee, “ Parallel implementation of motion-
compensation for HDTV video decoder,” in Proc. of
IEEE Int. Symp. on Consumer Electr., pp. 51-54, 1997.

[6] F. Dufaux, F. Moscheni, “ Motion estimation
techniques for digital TV : a review and a new
contribution,” in IEEE Proc., Vol. 83, pp. 858-876,
June 1995.

[7] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, MIT
Press, Cambridge, MA, 1994.

[8] Jongho Nang and Junwha Kim, “ An effective
parallelizing scheme of MPEG-1 video encoding on
ehernet-connected workstations,” in Proc. Advances in
Parallel and Distributed Computing, pp. 4-11, 1997.

[9] J. Konrad, “ Motion detection and estimation,” in

Image and Video Processing Handbook (A. Bovik,
ed.), chap. 3.8, Academic Press, 1999.

[10] M. N. Chong, S. Kalra, and D. Krishnan, “ Video
restoration on a multiple TMS320C40 system,” Texas
Instrument (TI) Application Report, TI Incorp.,
Houston, TX, Nov. 1996.

[11] Anil K. Kokaram, “ Motion Picture Restoration” , Ph.
D. Thesis, Dept. of Eng., Univ. of Cambridge, May
1993.

[12] Ioannis Pitas, Parallel Algorithms for Digital Image
Processing, Computer Vision and Neural Networks,
John Wiley & Sons, 1993.

[13] Shahriar M. Akramullah, Ishfaq Ahmad, and Min L.
Liou, “ Performance of software-based MPEG-2 video
encoder on parallel and distributed systems,” in IEEE
Trans. on Circuits and Systems for Video Technology,
Vol. 7, no.4, pp 687-695, August 1997.

[14] K. M. Uz, M. Vetterli, D. LeGall, “ Multiresoultion
approach to motion estimation and interpolation with
application to coding of digital HDTV,” in Proc.
ISCAS-90, pp. 1298-1301, May 1990.

[15] V. Bhaskaran and K. Konstantinides, Image and video
compression standards, Kluwer Academic Pub, 1995.

[16] A. Barak, S. Guday, and R.G. Wheeler, The MOSIX
Distributed Operating System: Load Balancing for
UNIX, in Lecture Notes in Computer Science, Vol.
672, Springer-Verlag, 1993.

[17] A.N. Choudhary, M.K.Leung, T.S.Huang, and J.H.
Patel, “ Parallel implementation and evaluation of
motion estimation system algorithms on a distributed
memory multiprocessor using knowledge based
mappings,” in 10th Int. Conf. on Pattern Recog., Vol.
2, pp. 337-342, 1990.

[18] C. Stiller and J. Konrad, “ Estimating motion in image
sequences: a tutorial on modeling and computation of
2D motion,” in IEEE Signal Processing Magazine, pp.
70-98, July 1999.

[19] S. S. Tandjung, T. S. Gunawan, and M. N. Chong,
“ Motion estimation using adaptive matching and
multiscale methods” , to be presented in Int. Conf. on
Visual Comm. and Image Proc., June 2000.

[20] S. S. Tandjung, T. S. Gunawan, and M.N.Chong,
“ Motion estimation using adaptive blocksize
observation model and efficient multiscale
regularization” , to be presented in Int. Conf. on Image
Processing, September 2000.

[21] T. S. Gunawan, S. S. Tandjung, and M. N. Chong,
"Performance of the Communication Layer with the
Myrinet Gigabit LAN for HDTV Images on Pentium-
Linux cluster using MPI", in Proceeding IECI
MULNET 2000, pp. 255-259, April 2000.

6L[WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�&RQWURO��$XWRPDWLRQ��5RERWLF�DQG�9LVLRQ
����'HFHPEHU�������0DULQD�0DQGDULQ��6LQJDSRUH

Table 1. The PSNR and the Entropy of the test video sequence
Parallel ME Parallel BME Parallel BHME

Video
Sequence PSNR

(dB)
Entropy

(bits)
PSNR
(dB)

Entropy
(bits)

PSNR
(dB)

Entropy
(bits)

Basketball 28.47 3.68 29.22 4.08 28.98 3.72
Flag 33.34 11.04 34.94 11.06 27.93 6.76
Man 37.44 5.99 41.47 6.26 34.90 4.34
House 40.56 1.31 42.80 0.77 42.44 0.63

(a) Basketball (b) Flag

(c) Man (d) House

Fig.3. The HDTV video test sequences Fig. 4. Speedup of Parallel ME

Fig. 5. Speedup of Parallel BME Fig. 6. Speedup of Parallel BHME

Table 2. Frame rate over various numbers of processors (frame/seconds)
Parallel ME Parallel BME Parallel BHMEVideo

Sequence 1 2 4 8 1 2 4 8 1 2 4 8
Basketball 0.004 0.009 0.017 0.035 0.002 0.004 0.009 0.017 0.020 0.040 0.079 0.154
Flag 0.005 0.010 0.019 0.037 0.002 0.005 0.009 0.019 0.023 0.045 0.090 0.172
Man 0.005 0.009 0.017 0.035 0.002 0.004 0.009 0.018 0.021 0.041 0.081 0.156
House 0.004 0.009 0.017 0.034 0.002 0.004 0.009 0.017 0.020 0.040 0.080 0.155

