
An Overview of CAn Overview of C

BalhansBalhans JayaswalJayaswal
Computer DivisionComputer Division

BARCBARC

Topics CoveredTopics Covered
General .

Level - Case - Structured - Format - Terminator - Continuation - Comments
- Idnetifiers - Files.

Basic data types
Integers/Characters/Boolean - Real - Arrays/Strings/Pointers.

Variables
extern - static - auto - register - const - volatile - const volatile -
typedef.

Operators
Arithmetic - Relational - Boolean - Bitwise - Assignment - Ternary logic -
sizeof - Typecast.

Expressions
Simple expressions - Compound expressions - Constant expressions.

Topics CoveredTopics Covered
Statements

Null statement - Simple (Terminated expressions, Function calls) -
Control statements - Compound statements (blocks).

Functions
Call by value - Declaration - Definition - Usage - Header files -
Forcing a call by reference by using data pointers - Function pointers.

User defined datatypes …. enum - struct - union - Objects and Members.

Preprocessor directives … Include file - Define macros - Conditional
compilation - Extensions using #pragma.

C – Library stdlib - stdio - io - ctype - string - mem - alloc, etc.

GeneralGeneral

Level
Case
Structured
Format
Terminator
Continuation
Comments
Idnetifiers
Files.

Features of CFeatures of C
Level

It is an intermediate level language. The language enjoys
a great success as an educational tool for general
programming at the school and graduate level.

Case
It is case sensitive. As a convention, all the keywords are
in lowercase. In C the variables defined as Temp, temp
and TEMP are all different.

Structured
C facilitates structured programming. It has powerful
control structures, and allows user to create own data
structures.

Features of C Features of C
Format

It has free format. Statements can begin from anywhere, can
be broken into any number of lines, till terminated with
semicolon.

a = 5 ;
or

a = 5
;

Terminator
Semicolon is used as statement terminator. Eg. See above.

Continuation
A character string or a macro cannot simply be broken into
several lines. Backslash as last character specifies
continuation to next line.

“This is a string” “This is split \
into two lines”

Comments in CComments in C
Comments are useful in a program to keep a track of what
the various parts are intended to achieve.
It greatly aids in understanding of the program by the
developer and others who might want to make
modifications.
Comments in C are to be enclosed inside /* and */
Comments can appear anywhere, even embedded inside
expression, but not embedded inside identifier names.
Nesting is not allowed.
/* This is a comment */
/*
Several lines

of comments
a /*embedded*/ = 5 ; */

Identifiers and FilesIdentifiers and Files
Identifiers
These are names of data variables, functions, macros, etc.
These begin with: underscore A…..Z a…..z
These continue with: underscore A…..Z a…..z 0…..9
Length can be upto 32 characters. Beyond 32, characters are

ignored.
Files
Source code files -

Have code and data definitions - End with .c
Source header files -

Have code and data declarations - End with .h
Compilation command:

cc, gcc, tcc, …..

Basic Data TypesBasic Data Types
The various data types allowed in C make it quite powerful
programming language. Basic data types in C are
• Integers – signed, unsigned, short, long
• Characters
• Boolean – true or false
• Reals – float, double, long double
• Arrays
• Strings – arrays of characters
• Pointers
• Struct
• Unions

Integers/Characters/BooleanIntegers/Characters/Boolean
Sizes: 1byte 2bytes 4bytes 1word int
Names: char short long (same as short

unsigned or long)
data range: 0…255 0…65535 0…4billion

(64K) (4G)

Signed -128… -32768… -2billion…
Data range: +127 +32767 +2billion

(+32K) (+2G)

INTERPRETATION
Integer interpretation : binary number, 2’s compliment.
Character interpretation : see least significant byte as ASCII code.
Boolean interpretation : if any bit 1 then TRUE, else FALSE.
Result of Boolean expression : if TRUE then 1, else 0.

Eg. ‘A’ + 10 + (5<6) 65 + 10 + (1) 76

Integers/Characters/BooleanIntegers/Characters/Boolean
CONSTANTS:
Integer constants : 65 = 0201 = 0x41, 0H, 0L, 0U, 0LU
Character constants : ‘A’ = ‘\201’ = ‘\x41’, ‘ABCD’
Boolean constants : 0, 1
With meta character \ : ‘\a’ ‘\b’ ‘\f’ ‘\n’ ‘\r’ ‘\t’ ‘\v’ ‘\\’ ‘\’’

DEMOTION : by truncation of higher bytes.
PROMOTION:

unsigned integer: pad higher bits with 0.
Signed integer: pad higher bits with sign bit (highest bit).

CAUTION: promotion of signed to unsigned
char a=255 ; /*signed a = -1*/
unsigned short b=a ; /*b=65535*/
unsigned short c=(unsigned char)a; /*c=255*/

RealsReals
Sizes : 4byte 8bytes 8/10/16 bytes
Names : float double long double

Range : +1E+38 +1E+308
Precision : 6 digits 15 digits

CONSTANTS
Double : 0. -.1 1E0 -.2e3 45.6e-7
Float : 0F -.1F 1E0F -.2e3F 45.6e-7F
long double : 0LF ……

DEMOTION : convert to single precision.
PROMOTION : convert to double precision.
DEFAULT TYPE : double

ArraysArrays
ARRAYS:

int A[3] ; /*A[0]...A[2]*/
int A[4][3] ; /*A[0][0]...A[0][2] ... A[3][2]*/
int A[2][3][4][5][6][7]; /*array of array of...*/

INITIALISED ARRAYS:
int A[3] = {10, 20, 30};
int A[] = {10, 20, 30}; /*same as above*/
int A[2][3] = {1,2,3, 10,20,30};
int A[2][3] = {{1}, {10,20,30}};
int A[][3] = {{1}, {10,20,30}};/*same as above*/

StringsStrings
Terminator : ‘\0’ (Null character, ASCII code = 0)
Constants : “” “a” “Test” “Test string” “ \” ”
Lengths :0 1 4 11
Sizes :1 2 5 12
Variables:

char s[5] = {‘T’, ‘e’, ‘s’, ‘t’, 0};
char s[5] = “Test” ; /*Same as above*/
char s[] = “Test” ; /*same as above*/
char s[40]= “Test” ; /*size=40,Length=4*/
char s[40]; strcpy(s, “Test”);

String FunctionsString Functions
Functions:

Declared in C standard library header file: string.h

strcpy(s, ”Test”); …… copy string to s
strcat(s, ”ing”); …… append string in s
int Len=strlen(s); …… get length of string
int Siz=sizeof(s); …… sizeof is an operator
strcmp(s1, s2); …… copy string to s
strchr(‘e’, s); …… find character inside s
strstr(“es”, s); …… find substring inside s
strncpy(s1, s2, n); …… copy atmost n characters

PointersPointers
These are addresses of data variables and functions.
Though the concept of pointers has resulted in simple and
elegant code, there is a tendency to avoid the excessive
use of pointers as they lead to more complex programming
codes and not easy during debugging.

Constants:
NULL defined in header files stdlib.h and stdio.h
String constants such as “Test” are pointer constants.
Operator & before a variable gives a pointer constant.

Pointers Pointers
Array variable without [] is a pointer constant.

short i, A[3], B[10][3] ;
&i … address of i
&A[0], A … address of A[0]
&A[i], A+I … address of A[i]
&B[0][0], B[0] … address of B[0] [0]
&B[i][0], B[i] … address of B[i] [0]
&B[i][j], B[i]+j … address of B[i] [j]
A, B[i] … address of storage of size 1 variable
B … address of storage of size 3 variables
A+1, B[i]+1 … address is offset by 1 variable
B+1 … address is offset by 3 variables

where size of each variable of short integer type is 2.

PointersPointers

VARIABLES:
char *p ; … pointer to 1 byte storage
short *p ; … pointer to 2 byte storage
long *p ; … pointer to 4 byte storage for integer
float *p ; … pointer to 4 byte storage for real

double *p ; … pointer to 8 byte storage

Each pointer is of size 4 bytes for storing
addresses in the range 0 … 4GB

Arrays and PointersArrays and Pointers

ARRAYS:
char *A[6]; 6 pointers pointing to 1 byte storages

char(*A)[6]; 1 pointer pointing to a 6 byte storage
char(*A[2])[6]; 2 pointers pointing to 6 byte

storages

Pointer Arithmetic and Pointer Arithmetic and
ComparisonsComparisons

POINTER ARITHMETIC:
Pointer ± integer address ± integer*PointedSize
Pointer1 - Pointer2 (address difference) /PointedSize

++Pointer Pointer++ --Pointer Pointer--
where PointedSize is size of the pointed storage.

POINTER COMPARISONS:
Pointer1 == Pointer2, Pointer1 < Pointer2

VariablesVariables

- extern
- static
- auto
- register
- const
- volatile
- const volatile
- typedef.

externextern
Syntax : extern datatype var_list ;
Location : anywhere.
Scope : global across modules.
Residence : DATA segment or BSS.
Lifetime : Till program terminates.

Note:
If unintialised variable : it is a declaration of variable.

Res=BSS
If initialised variable : it is a definition of variable.

Res=DATA
If located outside function, and extern is dropped,

statement becomes definition of global var_list.

staticstatic

Syntax : static datatype var_list ;
Location : (a) Outside function.

(b) Inside function/block.
Scope : (a) Within module.

(b) Within function/block.
Residence: DATA segment or BSS.
Lifetime : Till program terminates

autoauto
Syntax : auto datatype var_list ;

Location : Inside function/block.
Scope : Within function/block.
Residence : STACK.
Lifetime : Till control exits the block.

Note:
If auto is dropped : it is assumed to be auto.
If datatype is dropped: it is assumed to be int.

registerregister
Syntax : register datatype var_list ;
Location : Inside function.
Scope : Within function.
Residence : Inside registers, but maybe on STACK.
Lifetime : Till control exits the block.

Note:
Declared variable cannot be subjected to & (address-of).
It encourages code optimisation in fetching data from
memory.

constconst
Syntax 1: const datatype var_list ;
Syntax 2: datatype const var_list ; /*same as above*/
Syntax 3: const datatype * const var ;

Location: (a) Outside function. (b) Inside function/block.

Scope: (a) Within module. (b) Within function/block.

Residence: (a) RDATA segment. (b) STACK

Lifetime: (a) Till program terminates.(b) Till block is exited.

Note:
In Syntax 3, first const forbids *var=ex, and second forbids var=ex.
It encourages optimisation in fetching data from memory.

volatilevolatile
Syntax 1: volatile datatype var_list ;
Syntax 2: datatype volatile var_list ; /*same as above*/
Syntax 3: volatile datatype * volatile var ;

Location : (a) Outside function. (b) Inside function/block.

Scope : (a) Within module. (b) Within function/block.

Residence : (a) DATA segment. (b) STACK

Lifetime : (a) Till program terminates. (b) Till block is exited.

Note: It discourages optimisation in fetching data from memory

TypedefTypedef
ssyntaxyntax :: ttypedefypedef ddatatype_declarationatatype_declaration
The The ‘‘datatype_declarationdatatype_declaration’’ looks just like variable list declaration. But looks just like variable list declaration. But
instead of instead of varaiblesvaraibles (or objects) it declares new (or objects) it declares new datatypes.e.gdatatypes.e.g..

char Str[10] ;
struct
{

int a,b,c ;
} Rec, *Ptr ;

typedef char Str_t[10] ;
typedef struct
{

int a,b,c ;
} Rec_t, *Ptr_t ;

Str_t Str ;
Rec_t Rec ;
Ptr_t Ptr ;

OperatorsOperators

- Arithmetic
- Relational
- Boolean
- Bitwise
- Assignment
- Ternary logic
- sizeof
- Typecast.

ArithmeticArithmetic

Operators : + - * / % ++ --
Modulo : +a % b result: -(b-1)…0…(b-1)

a, b must be integers. If reals, use math function
fmod(). If a is negative, result is negative. Sign
of b is ignored.

Pre-Increment: int a=5, b = ++a ; /*a=6, b=6*/
Post-Increment: int a=5, b = a++ ; /*b=5, a=6*/
Pre-Decrement: int a=5, b = --a ; /*a=4, b=4*/
Post-Decrement: int a=5, b = a-- ; /*b=5, a=4*/

Relational and Logical Relational and Logical
Relational
Operators : == != < <= > >=
Result: if TRUE then 1, else 0

LOGICAL
Operators: && || !
Operations: and or not
Result: if TRUE then 1, else 0

Ternary Logic
Operator : ? :
Usage : a?b:c …..results in b if a is true, else results in c.

BitwiseBitwise

Operators : & | ~ ^
Operations : and or not exclusive or

Shift operators: << >>

Padding : Pad with 0.
If unsigned, Pad with 0, else with sign bit.

AssignmentAssignment

Operators:
= += -= *= /= %=
&= |= ^= <<= >>=

Usage: a+=b is same as a=a+b, etc.

Result : The value assigned is also the
result of the expression.

sizeofsizeof

Operator : sizeof
Returns : size in bytes of memory needed for storing data.

sizeof(char) ……results in 1
sizeof(short) ……results in 2
sizeof(char*) ……results in 4

double a ; sizeof a ……results in 8
double a[10]; sizeof a ……results in 80

sizeof‘A’ ……results in 2 or 4
sizeof “” ……results in 1
sizeof “Test” ……results in 5

double sub(); sizeof sub() ……results in 8

This size of resulting data is determined at compilation time without actually
computing the expression.

TypecastTypecast

Operators : (char) (short)
(char*) etc.

Operation : Change data of one
type to another type.

AUTOMATIC & EXPLICIT AUTOMATIC & EXPLICIT
TYPECASTTYPECAST

AUTOMATIC TYPECAST
In expressions:

char, short int
unsigned char, unsigned short unsigned int
float double

Induced by operand:
(char, short, int) op (char, short, int) (int) op (int)
If any is unsigned (unsigned) op (unsigned)
char, short, int) op (long) (long) op (long)
If any is unsigned (unsigned long) op (unsigned long)
(char,short,int,long) op (float,double) (double) op (double)

EXPLICIT TYPECAST:
short a ; (long)a …...Pad higher bits with sign bit.
long a ; (float)a …....Convert to floating point format.

ExpressionsExpressions

- Simple expressions

- Compound expressions

- Constant expressions

Simple expressionsSimple expressions
Anything that results in a data value is an expression. E.g.

5 ……… results in 5
A ……… results in value of A
A + 5 ……… results in value of A + 5
A < 5 ……… results in 0 or 1
A ? 5 : 6 ……… results in 5 or 6
A = 5 ……… results in 5
Sub() ……… results in data returned by Sub()

Types of simple expressions

Arithmetic expression : results in integer or real data value.
Logical expression : results in 0 or 1.
Pointer expression : results in a storage address value.

Compound expressionsCompound expressions

Syntax: (ex1, ex2, … exn)
Commas are used to separate the sub-expressions. Brackets can
be discarded if other punctuations of C appear there.
Computation is done from left to right.
Result of compound expression is that of its last sub-expression.

Eg.
b = (a=5, a+6) …………set a=5, b=11, return value 11
if (x>y) a=1,b=2,c=3; …set values to all, or to none.

NOTE:
In C syntax, wherever an expression can appear, in its place, a
compound expression can appear.

Constant expressionsConstant expressions

These are expressions composed entirely of constants
(numbers).

These are evaluated at compile time.

In C syntax wherever a constant can appear, in its place, a
constant expression of same datatype can appear.

Eg.
double a=1.25*2, b[10], [sizeof(b)/2+1];
is same as: double a=2.5, b[10], c[41];

StatementsStatements

- Null statement
- Simple Statements

(Terminated expressions, Function calls)
- Control statements
- Compound statements (blocks).

Null StatementNull Statement

Null statement:; or {}
It is a no-op statement.
Internally it provides a code address for

jumping to that location.

Simple statementsSimple statements

Any expression terminated with a semicolon. Eg.

Expression Statement
5 5;
A A;
A + 5 A + 5;
A < 5 A < 5;
A ? 5 : 6 A ? 5 : 6 ;
A = 5 A = 5;
Sub() Sub();

Control StatementsControl Statements
These statements provide control structures in programming.

Logic:
if
switch

Loop:
for
while
do

Jump:
goto
break
continue
return

If StatementsIf Statements
Syntax: if (ex logical) st

Syntax: if (ex logical) st1 else st2

These statements are used for switching the control of program
depending on one or the other condition.

The logical expression is evaluated, one set of statements is performed
if the expression is true whereas another set olf statements is
performed if the codition is false. For example,
If (a>b)

printf (“a is greater than b);
Else

pritnf(“b is greater trhan a”);

switch switch statementstatement
Syntax:
switch (ex Integer)
{ case Integer

Const1 : st11 st12 …..
break ;

case Integer
Const2 : st21 st22
break ;

default: st1 st2 }

default branch may be absent. break causes control to jump out of the
switch control structure . Any or all of the statements (including break)
may be absent,but there must be at least one statement just before the
closing brace

for for statementstatement
Syntax : for (exInitialiser ; exLogical ; exNext) st
Syntax : for (exInitialiser ; exLogical ; exNext)

{ …..
….. continue ;
….. break ;

…..
}

Any or all of the expressions can be absent.
If ex Logical is absent, it is taken to be forever TRUE.
continue causes control to jump to next iteration of the
loop. break causes control to jump out of the loop, terminating
it.

while while statementstatement
Syntax: while (exLogical) st
Syntax: while (exLogical)

{ …..
….. continue ;
….. break ;

…..
}

The while condition is checked and Iteration is performed
as long as exLogical is TRUE. The program comes out
of the loop once the while condition is false.

do do statementstatement

Syntax: do st while (exLogical) ;
Syntax: do

{ …..
….. continue ;
….. break ;

…..
}
while (exLogical) ;

Iteration is done as long as exLogical is TRUE. The do while
statement is performed atleast once, even if the logiocal expression
n is false.

gotogoto statementstatement

Syntax: goto label ; label : st
………. ……….
label : st goto label ;

Label is an identifier that is followed by a colon and
a statement.

goto cannot be used for jumping across functions.

Programmers are generally advised to avoid the use or
use minimum of the goto statements.

return return statementstatement

Syntax: return ;

Inside main() function, it causes execution
to terminate. ;

Inside other functions, it causes control to
return to calling fucntion.

For terminating execution from anywhere,
call function exit().

Compound Statements (blocks)Compound Statements (blocks)

Syntax: { st1 st2 …… }

There can be any (including zero) number of
statements inside a block.

In C syntax, wherever a statement can appear, in
ts place.

A compound statement can appear.

FunctionsFunctions

- Call by value
- Declaration
- Definition
- Usage
- Header files
- Forcing a call by reference by using data

pointers
- Function pointers.

Call by valueCall by value
C supports ‘call by value’ only.

For producing a ‘call by reference’ Address
of data variable is sent as actual arguments.

Pointer is used as formal parameter.

It is still a ‘call be value’ only in which the value
passed is an address.

Function declarationFunction declaration
Syntax (old) :

datatype functionname () ;
Syntax (ANSI) :

datatype functionname (arg_datatype_list) ;

It consists of just a declarator, followed by semicolon.
If datatype is absent, it is assumed to be int .
If function does not return anything, its datatype should be
void .
If in ANSI – C style, it is also called function prototype
declaration.

Function Function -- definitiondefinition
Syntax (old):
datatype functionname (arg_name_list)

arg_datatype_declarations
{ st1
st2 …….
}

Syntax (ANSI):
datatype functionname (arg_declaration_list)

{ st1
st2 …….

}

It consists of function declarator with argument declarations
followed by a block of statements that constitute the function body.

Function Function -- usageusage
Syntax:
functionname (arg_value_list) …… Function call.
functionname …… Function code address.

Normally, declaration or definition should precede usage.
Old-C convention demands that arg_values be explicitly typecasted.
In ANSI – C, this typecasting is automatically, internally done.

char char
Old-C short int short
argument int int
passing: long long long

float float
double double doubleActual

Args

Formal
args

Header filesHeader files
All standard library function declarations are in standard header files.
These are kept inside standard include directory.
These need to be included before their functions can be used.

Syntax:
#include <filename.h> /*search standard include dir*/
#include “filename.h” /*search current, then std.dir*/

e.g.

#include <stdio.h>
main ()
{

int c ;
while ((c=getchar()) != EOF) putchar(c);

}

Forcing a call by reference by Forcing a call by reference by
using data pointersusing data pointers

Eg. CALL BY VALUE

Using Old-C convention Using ANSI - C convention

int sum(); int sum (int, int);

int sum (a, b) int sum (int a, int b)
int a, b; {
{

return a+b ; return a+b ;
} }

Usage: int x=1, y=2, z ;
z = sum(x,y); /* z=3 */

FORCED CALL BY FORCED CALL BY
REFERENCEREFERENCE

FORCED CALL BY REFERENCE

Using Old-C convention Using ANSI - C convention
swap(); void swap (int*, int*);

swap (a, b) void swap (int*a, int*b)
int *a, *b; {
{

int tmp=*a ; int tmp=*a ;
*a=*b, *b=tmp ; *a=*b, *b=tmp ;

} }

Usage: int x=1, y=2 ;
swap (&x, &y); /* x=2, y=1 */

Function pointersFunction pointers
Declaration syntax:

datatype (*Ptr) (arglist) ;
‘Ptr’ will store code address of a function that

Takes arglist as specified in declaration.
Returns datatype as specified in declaration.

For example,
Function: datatype Function (arglist) ;

Initialisation: Ptr = Function ;
Usage:
(*Ptr) (args) ; /*same as: Function(args) ; */

User Defined User Defined DatatypesDatatypes

Topics Covered
enum
struct
union
Objects and Members

EnumEnum typetype
It is used for giving names to integer constants, and their group.
Syntax 1: enum datatypename

{
constname1 = n1,
constname2 = n2,
………

} var_list ;
Syntax 2: enum datatypename var_list ;
Syntax 3: typedef enum datatypename

{
constname1 = n1,
constname2 = n2,
………

} another_datatypename ;
Syntax 4: another_datatypename var_list ;

enumenum
In Syntax 1 and 3, ‘datatypename’ is optional.
- If ‘datatypename’ is specified, Syntax 2 can also be used.
In Syntax 1, var_list is optional.
- If not specified, Syntax-2 will be needed for specifying it.
Initialisers n1, n2 are integer constants, and are optional.
- If n1 is missing, it is assumed to be 0.
- If n2 is missing, it is assumed to be (n1+1), and so on.
Eg. enum MyColorType
{

BLACK, /* =0 */
BLUE, /* =1 */
GREEN, /* =2 */
CYAN, /* =3 */

} ScreenColor, TextColor=CYAN ;
enum MyColorType BorderColor=GREEN, FillColor;

StructStruct type type
It is used for grouping data related to each other,and naming the group.
Comparison with arrays:

Array Structure
Groups related data. Groups related data.
All data fields are of same Data fields may differ in size

size and data type. and/or datatype.

By passing address to a function By passing address to a
function
all the fields can be accessed. all the fields can be accessed.
The datafields are accessed by The datafields are
accessed by using an integer index. naming individual
fields.

Syntax of Syntax of structstruct
Syntax 1: struct datatypename

{
datafield_list_declaration

} var_list ;
Syntax 2: struct datatypename var_list ;
Syntax 3: typedef struct datatypename

{
datafield_list_declaration

} another_datatypename ;
Syntax 4: another_datatypename var_list ;

In Syntax 1 and 3, ‘datatypename’ is optional.
- If ‘datatypename’ is specified, Syntax 2 can also be used.
In Syntax 1, var_list is optional.
- If not specified, Syntax-2 will be needed for specifying it.
‘datafield_list_declaration’ has same syntax as variable declaration.

Syntax of Syntax of StructStruct

Syntax 1:
struct datatypename
{
datafield_list_declaration
} var_list ;

Syntax 2:
struct datatypename
var_list ;

Syntax 3:
typedef struct datatypename
{
datafield_list_declaration
} another_datatypename ;

Syntax 4:
struct
another_datatypename
var_list ;

Examples of Examples of StructStruct
typedef struct _FuelRodRec
{ shortPosX, PosY ; /*position*/
float Length ;
float FuelRadius ;
float CladThickness ;
float CoolantThickness ;
float FuelConductivity, FuelSpHeat ;
float CladConductivity, CladSpHeat ;
float CoolantHeatRemCoef ;
} FuelRodRec, FuelRodPtr ;

/*-------------Object definitions--------*/
struct _FuelRodRec
FuelA[50], FuelB[60];
FuelRodRec FuelA[50], FuelB[60];
/*Same as above*/
/*-----------Pointer definitions-----------*/
struct _FuelRodRec *Ptr ;
FuelRodRec *Ptr ; /*Same as above*/
FuelRodPtr Ptr ; /*Same as above*/

unionunion
It is used for accessing data by typecasting to various
datatypes.
Syntax 1: union datatypename

{
datafield_list_declaration

} var_list ;
Syntax 2: union datatypename var_list ;
Syntax 3: typedef union datatypename

{
datafield_list_declaration

} another_datatypename ;
Syntax 4: another_datatypename var_list ;

Union Union
In Syntax 1 and 3, ‘datatypename’ is optional.

If ‘datatypename’ is specified, Syntax 2 can also be used.

In Syntax 1, var_list is optional. If not specified, Syntax-2 will
be needed for specifying it.

‘datafield_list_declaration’ has same syntax as variable
declaration.

These datafields are overlapping datafields on same storage
space.

StructStruct and Unionand Union
These datafields are overlapping datafields on same storage space.
Eg. struct union
Struct dt union dt
{ {

short s ; short s ;
char a, b ; char a, b ;
char c[2] ; char c[2] ;
}Obj, *Ptr; }Obj, *Ptr ;

s
Obj Obj

s a b c[0] c[1] a
b

c[0] c[1]

Objects and MembersObjects and Members

Structure variables are also called objects, and datafields,
members. In above example

dt is a datatype.
Obj is an object of that datatype.
s is a data member of that object.

Syntax for accessing object members: Obj.s Obj.c[0]
Syntax for accessing pointer members: Ptr->s Ptr->c[0]
Syntax for accessing member addresses:

&Obj.s &Ptr->c[0]

Preprocessor DirectivesPreprocessor Directives

Topics Covered
Include file
Define macros
Conditional compilation
Extensions
using #pragma.

Include fileInclude file
Syntax 1: #include <filepath>
Syntax 2: #include “filepath”
In Syntax 1, filepath is searched in the standard

include directory.
In Syntax 2, filepath is searched
first in current directory,
if not found, then in the standard include directory.
The contents of the specified file are read and

inserted.
Insertion can be done even in the middle of a

declaration or expression.

Include FileInclude File

E.g. File= XX

double Data[]=
{

#include“data.dat”
}

10,20,30,
40, 50

a
#include “xx”

5 ;

File= data.dat

Include filesInclude files

It is used for including header files containing
function declarations. Eg:

#include <stdio.h>
main ()
{

int c ;
while ((c=getchar()) != EOF) putchar(c);

}

Define macrosDefine macros
Syntax 1: #define macroname substitution
Syntax 2: #define macroname(arg_list) substitution
Syntax 3: #undef macroname

In Syntax 1 and 2, ‘substitution’ is optional.
- If present, ‘macroname’ is substituted with ‘substitution’.
If ‘arg_list’ is supplied

Opening bracket must be just after `macroname’.
In ‘substitution’, args are also substituted.
In ‘substitution’, avoid using each arg more than once.

Use of brackets is recommended
To enclose the entire ‘substitution’ expression
To enclose individual args inside ‘substitution’

Macro definitionMacro definition
If macro definition spills into next line, end the previous line with \ .
Avoid recursion in macro calls. #undef undefines a macro.
#define BEGIN {
#define END }
#define PI 3.141593
#define SUM(a,b) ((a)+(b))
#define DBG(f) {if (IsDebug) \

printf(“%f “,f);}
int IsDebug=1 ;
main ()
BEGIN

DBG(SUM(PI,1)) /*prints 4.141593*/
END

Conditional CompilationConditional Compilation

Syntax 1: #ifdef macroname
……….
#else
……….
#endif

Syntax 2: #ifndef macroname
……….
#else
……….
#endif

Syntax 3: #if logical_constant_expression
……….
#elif logical_constant_expression2
……….
#else
……….
#endif

ExplainedExplained
The #elif and #else clauses are optional.
If `macroname’ has been used in a #define statement
‘#ifdef macroname’ evaluates to TRUE.
‘#ifndef macroname’ evaluates to FALSE.
If `macroname’ has been used in a #undef statement, or

never used
‘#ifdef macroname’ evaluates to FALSE.
‘#ifndef macroname’ evaluates to TRUE.
The ‘logical_constant_expression’ is computed at compile

time
If it results in a non-zero value, it evaluates to TRUE.
If it results in 0, it evaluates to FALSE.
If it is an undefined macro, it evaluates to FALSE.

Extensions using #Extensions using #pragmapragma
Syntax: #pragma extension
This is used for specifying compiler specific

directives
Directive to accept assembly language code.
Directive to affect warning notification of some type.
Directive to affect optimisations of various types.
Directive to affect code generation for debugging

purpose.
Compiler command line options have equivalents in

#pragma extensions.

