QuickBasic-For Total Retards! (Like Charles Naccio)

 By Joe Griffith

	Table of Contents

I. Introduction

II. The Basics

III. Basic Commands

I. Introduction

	This Guide is for a person who has never even seen a compiler, hasen't passed high-school, or whatever else. This will take you through starting with what a compiler is, where to get it, to VERY advanced programming. um...Enjoy

II. The Basics

	Okay, first off, what will you need to program cool little computer games in Qbasic? OK. First you will need a Qbasic code editor and compiler. You can download "Qbasic 4.5" from The Rise Development page at "www.angelfire.com/games2/Rise/index.html" in the downloads section, which will include both a code editor and a compiler! You will probably download it as a ".zip" file. Simply use a decompressor such as "Winzip" to decompress it. I would recommend that you unzip all of the files into a directory on your hardrive entitled "Qb45". For Example:

C:\qb45

	Next off, what do you do when you get it? Double click the file "QB.exe". The will take you into QBasic, you should get a Blue Screen with a File menu, Edit menu, and other menues. If you want to start typing code, just click on the open area and that is where you type the code. We will not go into the code yet, but we will get there!

	OK, now I recommend that you configure your "Qbasic" to look WAY COOL!!! OK, here's what you do:

1. Click on the "Options" menu on the top

 Another menu should pop-up

2. Click on "Display"

3. On the column on the left, select what color you want the text to be.

4. On the column on the right, select what color the background should be.

5. Click the "OK" button.

	OK, now everything looks cool, and you know where to type, you ask what next? You need to know a little bit more before you can start "Code Crunching"!

	OK, you type the code that You can understand into the editor. We call this "Source Code". Later the compiler will convert the "Source code" into "Binary code", which is a combonation of 0's and 1's that tell the computer what to do.

III. Basic Commands

	Ok, now for the actual code that we will type into the editor and later compiler.

1. Print

	The first command that you will want to know is the "Print" command. The "Print" command will print something onto the screen. For example:

Print "Hello Retards!"

	To run this program, press the "F5" Key at the top of the keyboard. This will compile it and then run the program. The program will print "Hello Retards!" onto the screen. Whatever you put into the quotation marks is what will be printed to the screen. That's about as simple as I can put it. Now you try it. :-) I know that sounds incredible lame, but if you're really a retard, you will learn from experience.

2. CLS

	OK, now for the "CLS" command. This command stands for Clear Last Screen.

	Try running the "Print" program from the last section again. You should notice that this time, it says "Hello Retards!" two times on the screen. The reason for this is that when you ran the program the first time it just left "Hello Retards!" on the screen. So when you ran it the second time, it will print it again below where it was printed the first time. Consequently, you have 2 "Hello Retards!"! In other words that you retards can understand, the first "Hello Retards!" is like the left overs that were never cleaned up. That's what the "CLS" command is for. To do the cleanup work. It just clears the whole screen. For Example:

CLS

Print "Hello Retards!"

	Now, it will clear the screen everytime before you print something new to the screen. This will make it so that there is only one "Hellow Retards!" printed on the screen!

3. Locate

	OK, now that you know how to print stuff to the screen and clear it, what if you want to print something somewhere else except for the top-left corner of the screen? The locate command will enable you to print something anywhere on the screen.

	Here's how it works, the computer can't understand "Print this in the middle of the screen", so we have to be pretty straight-forward with it. We have to tell it where to put it on the X-Axis, and on the Y-Axis. Kinda' like a graph. If it could be mapped out on a graph, it would look something like this:

0 <-----------X--------------->

/\ |--|--|--|--|--|--|--|--|--|--|--|--|

| |--|--|--|--|--|--|--|--|--|--|--|--|

| |--|--|--|--|--|--|--|--|--|--|--|--|

Y |--|--|--|--|--|--|--|--|--|--|--|--|

| |--|--|--|--|--|--|--|--|--|--|--|--|

\/ |--|--|--|--|--|--|--|--|--|--|--|--|

	The upper-most will be 0 on the Y-axis and as it goes down the number will increase. As for the X-axis, The far-left will equal 0 and as it goes to the right, the number will increase. The X-axis goes to about 80 while the Y-axis only goes to about 23.

	Here's what the command looks like:

Locate Y, X

	This is kinda' weird, that you pass the Y first, but don't get confused because of this. You should replace "Y" with where you want the text to be on the Y-axis, and the "X" with where you want it to be on the X-axis. Here's an example of the Locate command that will run properly:

CLS

Locate 13, 32

Print "Hello Retards!"

	This example should print "Hello Retards" about in the middle of the screen. Something that you should pay close attention to is to make sure that you print it on the screen. If you try to print that with an X-axis of 500, then

you will get the error "Subscript out of Range".

4. Let

	The next command that us Retards will learn is the "Let" command. This command deals with what we call Variables. A variable is a set of information that you can access using a name that you supply! You don't have to tell it where to put the information, but you have to give it a name. For example:

CLS

Let A = 20

Locate 10, A

Print "Hello Retards for the 50th time"

	Now, our Variable labeled "A" holds the value "20". So now, whenever you use A, the program tells itself "20".

	To save time (though not very much), you don't have to type "Let", you can just put

A=20

if you want to.

	Now there are certain things that you must keep in mind when naming your variables.

	*They cannot begin with a number such as : 1apple, or 232

	*The cannot be the name of a Qbasic function or sub

	*Don't use !, @, #, $, %, ^, &, *, (, or) in the variable name because 	

		Most of them are used as qbasic Data types

	

5. For...

	The "For" statement is a certain type of command that will form what we call loop. A loop enables us to do the same code over and over again without having to type the same thing out ten million times. This is what the "For" command should look like:

For J = 1 to 100

Next J

	Here's what happens in this example. Look where it says "J". J is a variable that we are using to control the loop. Now the next part. "1 to 100". That part is saying basically that we're going through the loop 100 times. Here's what happens: It starts with the "For" command. After that you can put any code in the middle of the "For" and the "Next" command. After it executes the code in the middle, when it reads "Next J", it will add 1 to the value of J making J = 2. It then goes back to the top of the loop executing the code over and over again until J = 100.

	Now, the variable we have controlling the loop doesn't have to be "J", it can be any name that a variable can have like "LoopController", or "WhoCaresWhatThisVariableIsCalled".

6.Do...Loop

	Okay, this is one of the most common command with every game. Every game has what we call the main loop. The main loop is to basically all the code in the game that is repeated over and over again until a certain condition is met or not met!

	Here's what the command should look like:

Do

Loop

	Now, before you run this program remember the following key combonation: "CTRL + SHIFT + BREAK". If you get your program going in an unstoppable loop, this will halt the program and let you change it to make it run properly! Okay, now try running the program. Notice that you can't get out. It's because there is no statement saying when to exit the loop. 	Well, you have a few options: examine the following clip:

a = 1

do

a = a + 1

loop while a < 5000

end

	Okay, first we're declaring a as 1. Then we're opening up the loop with "DO". The next line adds 1 to the value of 'a'! then the statement "loop while a < 5000". Here's what that does. With the "While" Statement there, the loop command will jump back to the "do" statement and then keep going down until a is equal to or greater than 5000. So it's like the first time we go through the loop a will equal 1, the next time a will = 2, and so on up to 5000. As soon as A = 5000, then it doesn't worry about jumping back to the 'do' statement. so the next command will be "end" which ends the program.

7. If...Then...

	The next command that us retards are going to learn is the "If...Then" statement. This statement is very special. Without the If...Then... statement the program would run the Exact same everytime. Could you imagine a word processor that automatically puts in the same text every time you go into the program, then saves it. Well if we didn't have this command, that's what would happen.

	This is what the command looks like:

If (a) = (5) then end

	First, the "if" command is going to check if "(a)" is equal to "(5)". If it is, then it will execute the "end" statement. The "If" statement can also look like this:

If (a) = (5) then

	print "A is equal to 5"

end if

	Okay, this way is the same except that instead of having the statements on the same line as the "If" statement, you should have it on the next line, and as many as you want to put in there. Then when you have everything you want, you type "End If". This will close the if statement.

	There is yet another way to use the if statement. It should look like this:

if (a) = (5) then

	print "a is equal to 5"

else

	print "a is not equal to 5"

end if

	Okay, this one is pretty simple to understand. if the first statement is not met, then it will not execute the code inside of the first part. It will however execute the code 'print "a is not equal to 5" '! Then at the end you must have end if!

8. Goto

	Okay, the goto statement may seam kind of odd at first, but you will get it. First off, in order for the 'goto' statement to work, you must have "Line Numbers". Line numbers are basically addresses to the program. A simple program with addresses should look like this:

10 CLS

20 PRINT "this is using line numbers"

30 END

	This program will run just fine in Qbasic. But before you start spending all of your time putting numbers in front of all of the commands you've written, consider this: You don't have to have line commands for every command. So a program with line statements could look like this:

CLS

10

20 Print "This looks messy"

End

	That program will also run just fine in Qbasic. Now all that the goto statement does is it tells your program to Jump to a certain line of code. The line of code will have a number on it. The following example should be VERY easy to understand:

10 CLS

20 GOTO 40

30 PRINT "This line will not be printed"

40 PRINT "This line will be printed"

50 END

	Here's how this program works. The goto statement in line 20 tells the program to jump to the print command in line 40. Therefore skipping over line 30, and then ending the program.

	Here's a little bit of a more complicated example, but I am confident that you will understand it!

a = 1

do

a = a + 1

if a = 5000 then goto 5322

loop

5322 END

	Okay, if you don't understand this program I'll explain it for you. If you already do Understand this program, then um... I'll explain it to you anyways! The program starts by declaring a as 1. No each time in the loop, a's value is increased by 1. The statement on the fourth line of code says if a is equal to 5000 then goto line 5322 which is out of the loop and ending the program. So to put it into simple words, this program just goes through a loop 5000 times and then ends! I know you think it's the coolest thing in the world!

9. Inkey$

	This is one of the most important commands for games. The command checks for input from the keyboard without pausing the program! Now here's what it should look like in a program!

a$ = inkey$

	What this will do is put the value of Inkey$ into our newly created string entitled "a$"! Now instead of typing Inkey$, all you have to say is a$! Not that we know this, we can mix the 'inkey$' function in with some of our other functions!

do

a$ = inkey$

loop while a$ = ""

	What this example will do is keep going through the loop until the user presses a key or as the program says... "while not pressing a key". If you type the letter 'a', then inkey will return a. Now a does not = "" so that means we can exit the loop.

	We will now discuss how to recognize what inkey$ returns. As I said in the last paragraph, if we type any of the characters, such as '!' or 'Z' then that's what inkey$ will return. Now how do we make inkey$ recognize the arrow buttons, or the space bar, or the escape key. Well, Qbasic has what we will call "Character codes". the character code for the escape key is 'chr$(27)'. So if we want a program that will end as soon as we press escape, it should look something like this:

do

a$ = inkey$

loop until a$ = chr$(27)

	The character codes for the commonly used buttons are as follows:

enter = chr$(13)

left arrow button = chr$(0) + chr$(75)

right arrow button = chr$(0) + chr$(77)

down arrow button = chr$(0) + chr$(80)

up arrow button = chr$(0) + chr$(72)

	That's about all that you will need to know about input from keyboard.

10. Screen

	The screen command will set the screen mode. In order to use the Qbasic Graphics functions, we must set the screen mode to a mode that is compatible with the graphics functions. The following is a list of what screen modes are compatible for the regular graphics routines:

Screen 0 - TEXT ONLY!

Screen 1 - 320 * 200 graphics with 16 colors. Wahoooo!

Screen 2 - 640 * 200 graphics with 16 colors.

Screen (3 - 6) - I wouldn't worry about these.

Screen 7 - 320 * 200 graphics with 16 colors.

Screen 8 - 640 * 200 graphics with 16 colors.

Screen 9 - 640 * 350 graphics with 64 colors.

Screen 10 - 640 * 350 graphics with 9 colors.

Screen 11 - 640 * 480 graphics with 256 colors.

Screen 12 - 640 * 480 graphics with 256 colors.

Screen 13 - 320 * 200 graphics with 256 colors.

	Really for games, only screen 11-13 would be ideal. For all of my first games, I would use screen 13. but you can also use screen's 11 to 13!

	Now that way that you actually set the screen mode is in 1 command:

Screen 13

	You can replace 13 with whatever screen mode that you would like to use. But that's how easy it is. I would recommend that after you set the screen mode, that you use "CLS" to clear the Screen.

11. Color

	Now to set the color, use the following command:

Color 9

	

	Again you can replace the 9 with whatever color you want to use. In almost every language you will have to use a number value to specify the color. The number values for the different values FOR SCREEN 13 are:

color 0 = Black

color 1 = Blue

color 2 = Green

color 3 = Teal

color 4 = Blood Red

color 5 = Purple

color 6 = Orange

color 7 = Gray

color 8 = Dark Gray

color 9 = Light Blue

color 10 = Light Green

color 11 = Very Light Blue

color 12 = Bubble Gum Red/Pink

color 13 = Bright Purple

color 14 = Yellow

color 15 = Bright White

	After you set the color, you may use the print command, or any other graphics command and instead of doing it in just white, it will do it in the color you specified! Go and see for yourself. Try the following example:

Screen 13

CLS

COLOR 1

PRINT "I'm In Blue"

COLOR 2

PRINT "I'm In Green"

END

	Pretty cool, huh? Well, that's the color statement for ya'!

12. Line

	The line statement is used to draw a line from point 1 to Point 2. To specify the width and the height, we use what we will call X and Y. X being the Width and Y being the height. In The VGA, the top of the screen on the Y axis will be 0 and the Y will increase as we move down the screen. The Left side of the screen on the X axis will be 0 and also increases as me move farther to the right. For every point, you must specify where it is on the X-Axis and where it is on the Y-Axis. You must also specify a color. Here's what the command looks like:

Line (X1, Y1)-(X2, Y2), Color

	You must replace the X1, Y1,X2, and the Y2 with numbers representing where they are on the screen. So let's draw a point from the top-left corner of the screen to the bottom-right in the color of bright white.

CLS

SCREEN 13

LINE (1, 1)-(319, 199), 15

	The top left corner of the screen's coordinates is (1, 1) and the bottom right is (319, 199), in screen 13. And then of course the color 15 is bright white.

	Now, the line command can do more than just draw a line. It can make a box, or it can make a box and fill it. To just make a regular box, here's what we would do:

Line (1, 1)-(50, 50), 15, B

	Here's how it determines the coordinates of the box. The top-left corner of the box is the first set of coordinates and the bottem-right corner of the box is the second set of coordinates. Now that we know the top-left coordinates and the bottem-right coordinates, the computer will easily figure out the bottem-left and the top-right!

