
- 20 -Programming Language / I 20

CONTENTS

1.
Introduction

2.
Programming Fundamentals

INTRODUCTION

· PL/I (Programming Language / 1) is a general purpose language supporting scientific, data processing, text processing, systems programming applications.

· Supports features of COBOL,PASCAL and ALGOL.

· The first version of PL/I was APL. In 1965 IBM implemented that version under the name PL/I.

· PL/I compilers have been developed for a number of computer systems, including the following

BURROUGHS

CDC

DIGITAL

HONEYWELL

IBM

PROGRAMMING FUNDAMENTALS

· Should follow the following conventions while coding PL/I programs

 1

Use of OS

 2-72

PL/I statements

 73-80
Program identification name/Sequence no

· Each Comment starts with /* and ends with */

e.g.
/* THIS IS COMMENT EXAMPLE */

· PL/I program should start with PROCEDURE STATEMENT

e.g.
EXAMPLE: PROCEDURE OPTIONS(MAIN);

MAIN is must for main programs

· PL/I character set

blank . (+ & $ *) ; - / , % ? : # @ ‘ = “

A B C D E F G H I J K L M N O P Q R S U V X Y Z

0 1 2 3 4 5 6 7 8 9

 Assume the above order while comparison.

IDENTIFIERS

· Identifiers are classified as

NAMES OF DATA

PROCEDURE NAMES

FILE NAMES

LABELS

KEYWORDS
· The alphabets allowed for identifier names are from A-Z ,from 0-9 and special characters @, #, $ which are considered as alphabets in PL/I.

· The only special character allowed is _(underscore) which is the separator.

· The first character of an identifier must be an alphabetic character.

· The maximum length of external file/procedure names is 7 or 8. _, @, #, $ may not be allowed for these names

· The maximum length of internal procedures may be upto 31 chars.

DATA TYPES AND STRUCTURES

Data in PL/I may be classified as

· Coded Numeric data

 Packed Decimal
FIXED DECIMAL

Fixed Point

FIXED BINARY

Floating Point

FLOAT DECIMAL

FLOAT BINARY

· Numeric Character data

Zoned Decimal

PICTURE

· Logical data

Character

CHARACTER/PICTURE

Bit

BIT

· Arrays

· Structures

· Pointers

· Files

Implied Data types

· The implied data type for a data item starting with I thru N is FIXED BINARY.

· The implied data type for other data items is short -form floating point

DECLARE STATEMENT

Syntax:

DECLARE name attributes

Base attribute

Function
 To specify the base type of an identifier

Options

BINARY, DECIMAL

Default

Depends on the prefix of an identifier and scale attribute

Example
 DCL EX_1 DECIMAL FIXED(5,2);
Scale attribute

Function
 To specify the scale of an identifier

Options

FIXED, FLOAT

Default

Depends on the prefix of an identifier and base attribute

Example
 DCL EX_1 DECIMAL FIXED(5,2);

Precision attribute

Function
 To specify the no.of significant digits and/or the decimal or binary point

alignment identifier

Options

(p,q) or (p)

Default

Depends on the base and scale attributes

Example
 DCL EX_1 DECIMAL FIXED(5,2);
Note

For floating point data declare only the no.of significant digits

e.g. DCL EX_1 FLOAT DEC(9,6) ; /* INVALID */

Default attributes

Declared Attributes
Default Attributes

DECIMAL FIXED
(5,0)

DECIMAL FLOAT
(6)

BINARY FIXED
(15,0)

BINARY FLOAT
(21)

DECIMAL
FLOAT(6)

BINARY
FLOAT(21)

FIXED
DECIMAL(5,0)

FLOAT
DECIMAL(6)

None-initial I-N
BINARY FIXED(15)

None-other than I-N
DECIMAL FLOAT(6)

Mode attribute

Function
To specify the type of an identifier i.e whether it is a REAL or COMPLEX

Options

REAL or COMPLEX

Default

REAL

Example
 DCL EX_1 DECIMAL FLOAT(5) COMPLEX;
String data attributes

Function
 To specify the string data

Options

BIT, CHAR

Default

depends upon the option

Example
 DCL EX_1 CHAR(5) ;

DCL EX_2 BIT(10);
VARYING attribute

Function
 To declare variable length strings

Requirement
CHAR/BIT

Default

depends upon the requirement

Example
 DCL EX_1 CHAR(5) VARYING;

 DCL EX_2 BIT(10) VARYING;
DEFINED attribute(overlay definition)

Function
 To equate or share two or more variables to the same storage area

Requirement
Base identifier must be defined before referenece

Example

DCL EX_1 CHAR(5);

DCL EX_2 DEFINED EX_1;

POSITION attribute

Function

To overlay specific part of base identifier

Requirement
DEFINED attribute must be present

Example

DCL EX_1 CHAR(5);

DCL EX_2 DEFINED EX_1 POSITION(3);

INITIAL attribute

Function

To set an identifier to an initial value

Example

DCL EX_1 CHAR(14) INIT(‘PL/I TRAINING’);

FIXED DECIMAL

Data Format

Packed Decimal

Type of Data

Coded Arithmetic

Default Precision

5 decimal digits

Max. Precision

15 decimal digits

Examples

DECLARE EXAMPLE_1
FIXED DEC(7);

DECLARE EXAMPLE_2
FIXED DEC(9,2) INIT (24.00);

DECLARE EXAMPLE_3
FIXED DEC;

FIXED BINARY

Data format

Fixed-point

Type of Data

Coded arithmetic

Default Precision

15bits(32,767 in decimal)

Max. Precision

31bits(2,147,483,647 in decimal)

Examples

DCL
EXAMPLE_1
FIXED BIN(15);

DCL
EXAMPLE_2
FIXED BIN(31) INIT(2147483647);

DCL
EXAMPLE_3
FIXED BIN(31,6);

FLOAT DECIMAL

Data Format

Floating-point

Type of Data

Coded arithmetic

Default Precision
6 decimal digits

Max Precision

16 decimal digits

Range of Exponent
10-76 to 10+75
Examples

DCL EX_1
FLOAT DEC(6);

DCL EX_2
DEC(6);

DCL EX_3
FLOAT(6);

DCL EX_4
FLOAT DEC(16) INIT(6E+12);

DCL EX_5
FLOAT DEC INIT(5280);

FLOAT BINARY

Data Format

Floating-point

Type of Data

Coded arithmetic

Default Precision

21 bits(1,048,576 in decimal)

Max Precision

53 bits

Range of Exponent
2-260 to 2+252
Examples

DCL EX_1
FLOAT BIN(6);

DCL EX_2
BIN(6);

DCL EX_3
FLOAT(6);

DCL EX_4
FLOAT BIN(16) INIT(6E+12);

DCL EX_5
FLOAT BIN INIT(5280);

BIT

Data Format

Bit

Type of Data

Logical

Default length

none

Maximum Length
 8000 bits for constants

32767 bits for variables

Examples

DCL EX_1
BIT(9)

INIT(‘111100001’B);

DCL EX_2
BIT(16)
INIT((8)’10’B);

DCL EX_3
BIT(8)

INIT(‘0001’B); /* EX_3 = ‘00010000’ */

CHARACTER

Data Format

Character

Type of Data

Alphameric

Default length

none

Maximum Length
1000 chars for constants

32767 chars for variables

Examples

DCL EX_1
CHAR(20);

DCL EX_2
CHAR(4) INIT(‘PL/I’);

ARITHMETIC OPERATIONS

Symbol
Operation

**
Exponentiation

*
Multiplication

/
Division

+
Addition

-
Subtraction

RULES FOR ARITHMETIC OPERATIONS

Rule1:

The order in which arithemetic operators are performed is

· Exponentiation

· Multiplication or Division

· Addition or Subtraction

Rule2:

When paranthesis are specified , the expression with in the paranthesis will be evaluated first , starting with the innermost paranthesis.

Rule3:

The prefix operators allowed are

Not

 +
Positive

 -
Negative

Rule4:

Any expression or element may be raised to a power may have either a positive or negative value. The exponent itself may be an expression.

Rule5:

If two or more operators of the highest priority appear in the same expression, the order of priority of those operators is from left to right.

e.g.
The order of evaluation of -A ** -Y is

1. Negation (-Y)

2. Exponentiation (A**-Y)

3. Negation

BUILT-IN FUNCTIONS

Types

· Arithmetic

· Mathematical

· Array Handling

· String Handling

· Condition Handling

· Storage Control

· Other Functions

ARITHMETIC FUNCTIONS

Function
Purpose
Example(s)

ABS
Finds the absolute value of a given quantity
X= - 3.714;

Y=ABS(X); /* Y=3.714 */

CEIL
Finds smallest integer greater than or equal to argument
X=3.32;

Y=CEIL(X); /* Y=4.00 */

FLOOR
Finds largest integer that does not exceed the argument
X=3.32;

Y=FLOOR(X); /* Y=3.00 */

MAX
Finds the largest value from two or more arguments
X=100;Y=32.76;Z= -8;

Z=MAX(X,Y,Z); /* Z = 100 */

MIN
Finds the smallest value from two or more arguments
X=100;Y=32.76;Z= -8;

Z=MIN(X,Y,Z); /* Z = -8 */

MOD(m,n)
Extracts the remainder resulting from the division of the first argument by second argument
X=29;

Y=MOD(X,6);/* Y=5 */

ROUND(m,n)
Rounds a given value at a specified digit and pads spare digit positions with zeros
X=123.7261;

Y=ROUND(X,3);/* Y=123.7260 */

Y=ROUND(X,1);/* Y=123.7000 */

SIGN
Determines the sign of a value and returns a result of

 1 for positive

 0 for zero

-1 for negative
X=123;

I=SIGN(X); /* I=1 */

TRUNC
Changes fractional part of an argument to zero
X=3.32;

Y=TRUNC(X); /* Y=3.00 */

MATHEMATICAL FUNCTIONS

ACOS(X)

ASIN(X)

ATAN(X)

ATAN(X,Y)

ATAND(X)
ATAND(X,Y)

ATANH(X)

COS(X)

COSD(X)

COSH(X)
ERF(X)

ERFC(X)

EXP(X)

LOG(X)

LOG10(X)
LOG2(X)

SIN(X)

SIND(X)

SINH(X)

SQRT(X)
TAN(X)

TAND(X)

TANH(X)

STRING HANDLING FUNCTIONS

Function
Purpose
Example(s)

1.CHAR

2.CHAR(x,n)

n is the length of the result
Converts a given value to a character string
DCL A FIXED DEC (5);

DCL B CHAR(5);

A=175;

B=CHAR(A); /* B=‘ 175’ */

BIT
Converts a coded arithmetic data item or char string to a bit-string
X=BIT(NUMBER);

/* X=BIT STRING */

INDEX
Searches a string for a specified bit or char string
NAME=‘PL/I LANG’;

IND=INDEX(NAME,’PL/I’);

/* IND=1 */

LENGTH
Finds the length of a given char string or bit string
DCL NAME CHAR(20) VARYING;

NAME = ‘PL/I’;

LTH=LENGTH(NAME);

/* LTH=4 */

REPEAT(m,n)
Concatenates the given string itself a specified no.of times
NAME=REPEAT(‘PL/I’,2);

/* NAME=‘PL/IPL/I’ */

SUBSTR(NAME,I,J)
To manipulate smaller part of larger char or bit string
X=‘PL/I LANGUAGE’;

Y=SUBSTR(X,1,4);

/* Y=‘PL/I’ */

TRANSLATE(s,r,p)
Substitutes one char with another
NAME=‘ABCD’;

NAME=TRANSLATE(NAME,’X’,1);

/* NAME=‘XBCD’ */

VERIFY
Examines two strings to verify that each char or bit of the first string is represented in the second string
DIGITS=‘0123456789’;

X=‘01234’;

RESULT=VERIFY(X,DIGITS); /* RESULT = 0 */

DATE and TIME FUNCTIONS

· Returns Current Date and Current Time

e.g.
CURR_DATE=DATE;

CURR_TIME=TIME;

· Format

DATE

YYMMDD

TIME

HHMMSSIII

 DATETIME CCYYMMDDHHMMSSnnnn

· When these functions are used , they should be explicitly declared to have the BUILTIN attribute.

e.g.
DCL (DATE , TIME) BUILTIN;

RULES FOR DATA CONVERSION

· If the base of the data item differs , DECIMAL is converted to BINARY

· If the scale of the data item differs , FIXED is converted to FLOAT

· If the CHAR and BIT differs , BIT is converted to CHAR

SUBROUTINES AND FUNCTIONS

Advantages

· Saves coding effort

· Reduces total programming time

· Improves program readability

· Facilitates program maintenance

Types

· Main procedures

· Subroutine procedures

· Function Procedures

SUBROUTINE PROCEDURES

· A subroutine procedure is invoked by a CALL. Arguments are passed by means of an argument list.

· Subroutine procedures that are seperately compiled from the invoking procedure are called external procedures.

e.g.
CALL SUBR(X,Y,Z)

ARGUMENTS AND PARAMETERS

· An argument is a value passed to the invoked procedure, each argument corresponds to a parameter in the parameter list, and this corrspondence is from is from left to right.

· A parameter is a name used within the invoked procedure to represent another name or expression that is passed to the procedure as an argument.

e.g.
MAINPR: PROCEDURE OPTIONS(MAIN);

DCL(X,Y,Z) FIXED DEC(7,2);

DCL SUBRT ENTRY;

.........

CALL SUBRT(X,Y,Z);

.........

END MAINPR;

SUBRT: PROCEDURE (A,B,C);

DCL (A,B,C) FIXED DEC(7,2);

.................

END SUBRT;

MAINPR
invoking procedure

SUBRT

invoked procedure / sub program

X,Y,Z

arguments

A,B,C

parameters

· An argument include

Variable

Constant

Expression

Array name

Array Expression

Major Structure name

Minor Structure name

Structure Expression

Built-in function name

Entry name

File name

Label

ENTRY STATEMENT

Allows us to direct the compiler to generate coding to convert one or more arguments to conform to the attribute of the corresponding parameters , should arguments and their corresponding parameters have different attributes.

e.g.
DCL SUBRT ENTRY (FIXED DEC(7,2),FIXED DEC(7,2),FIXED DEC(7,2));

DCL (X,Y,Z) FLOAT DEC(6);

................

CALL SUBRT(X,Y,Z);

When the subroutine SUBRT is invoked X,Y,Z are converted to FIXED DEC(7,2).

DUMMY ARGUMENTS

A dummy argument is always created for the following cases

· If an argument is a constant

· If an argument is an expression involving operators

· If an argument is an expression in paranthesis

· If an argument is a variable whose atrributes are different

· If an argument is itself a function reference containing arguments

FUNCTION PROCEDURES

A function procedure that returns a single value to the invoking procedure

e.g.
Z=FUNC(X,Y,Z);

RETURN statement is always needed for in a function subprogram.

syntax:
RETURN(element-expression);

e.g.
FUNC: PROCEDURE(A,B,C);

RETURN(A+B+C);

END FUNC;

RECURSIVE PROCEDURES

When a procedure invokes itself , it is called as recursive procedure. To specify a procedure as RECURSIVE we need to give RECURSIVE option with PROCEDURE statement.

e.g.
N-FACTORIAL: PROCEDURE (N) RECURSIVE;

K=N-1;

IF K = 1 THEN

 I=N;

ELSE

 I=N*N_FACTORIAL(K);

RETURN(I);

END N_FACTORIAL;

LOGICAL TESTING

Types

· IF statement

· SELECT statement

Comparision Operators

Symbol
Operation

GE or >=
Greater than or equal to

GT or >
Greater than

NE or =
Not equal to

=
Equal to

LT or <
Less than

LE or <=
Less than or equal to

NL or <
Not less than

NG or >
Not greater than

Logical Operators

Symbol
Operation

NOT

&
AND

|
OR

IF STATEMENT

Types

· Simple IF

· Compound IF

· Nested IF

SIMPLE IF

Syntax:

IF (exp) THEN statement(s);

e.g.

IF A=B THEN

 DO;

 X=1;

 Y=1;

 END;

COMPOUND IF

Syntax:

IF (exp) THEN statement(s);

ELSE statement(s);

e.g.

IF A=B THEN

 X=1;

ELSE

 X=2;

NESTED IF

Syntax:

IF (exp) THEN

 IF (exp) THEN statement(s);

 ELSE statement(s);

ELSE statement(s);

e.g.

IF A=B THEN

 IF A=C THEN

 X=1;

 ELSE

 X=2;

ELSE

 X=3;

NULL ELSE IN NESTED IF

e.g.

IF A=B THEN

 IF A=C THEN

 X=1;

 ELSE; /* NULL ELSE */

ELSE

 X=3;

SELECT STATEMENT

Syntax:

SELECT (optional expression)

 WHEN (expression1) action1;

 WHEN (expression2) action2;

 OTHERWISE action3;

END;

e.g.

SELECT (LANG_CODE)

 WHEN(‘P’)
CALL PL1_FUN;

 WHEN(‘C’)
CALL COBOL_FUN;

 OTHERWISE
CALL ERROR_FUN;

END;

SELECT /* select with out expression */

 WHEN (CODE=‘P’) CALL PL1_FUN;

 WHEN (CODE=‘C’) CALL COBOL_FUN;

 OTHERWISE
 CALL ERROR_FUN;

END;

CONDITIONS AND ON-UNITS

Syntax:

ON condition
on-unit;

Types of Conditions

I/O Conditions

· ENDFILE(filename)

· ENDPAGE(filename)

· RECORD(filename)

· TRANSMIT(filename)

· CONVERSION

· SIZE

Arithmetic Conditions

· CONVERSION

· FIXEDOVERFLOW

· OVERFLOW

· UNDERFLOW

· ZERODIVIDE

· SIZE

Types of Actions

· System Action

· Program specified Action

· Null Action (e.g. ON ENDPAGE (PRINTR);)

I/O CONDITIONS
Condition
When it Raises
Example

ENDFILE
Raises during GET or READ operation. It is caused by reading the past of the last record
ON ENDFILE(TRAN)

 MORE_REC = NO;

ENDPAGE
Raises when a PUT stmt results in an attempr to start a new line beyond the limit specified for PAGESIZE
ON ENDPAGE(PRINTR)

 BEGIN

 END;

TRANSMIT
Raises when an input or output device did not transmit data correctly

ARITHMETIC CONDITIONS

Condition
When it raises
Example

CONVERSION
Occurs whenever a conversion is attempted on char data containing chars that are invalid
DCL X BIT(4);

X=‘10A1’;

FIXEDOVERFLOW
Occurs whenever a result exceeds the fixed point limit declared
DCL (A,B,C) FIXED DEC (15);

A=40000000;

B=80000000;

C=A*B;

OVERFLOW
Occurs when the magnitude of a floating point number exceeds the maximum
A=55E71;

B=23E11;

C=A*B; /* THE MAX IS 75 */

UNDERFLOW
Occurs when the magnitude of a floating point number less than permitted minimum
A=23E-71;

B=3E-9;

C=A*B; /* THE MIN IS -78 */

ZERODIVIDE
Occurs when an attempt is made to divide by zero
A=10;

B=0;

C=A/B;

Note:

1. Conditions are enabled or disabled through prefix. The prefix NO is used for disable a condition.

e.g. (NOOVERFLOW):PROG1:PROC OPTIONS(MAIN)

2. We can simulate the occurance of a condition through the use of SIGNAL statement.

Syntax:
 SIGNAL condition;

BUILT-IN FUNCTIONS FOR ON-UNITS

Function
Purpose
Example

ONCODE
To determine the type of interrupt that caused the on-unit to become active
ON ERROR

 PUT LIST (ONCODE);

ONLOC
To determine the entry point of the procedure in which the condition was raised

ONCHAR
Extracts the char that caused the CONVERSION condition to be raised
CHAR=ONCHAR;

ONSOURCE
Extracts the contents of the field that was being processed when a CONVERSION was raised
SOURCE=ONSOURCE;

REPETITIVE STRUCTURES

Types

· DO-WHILE

· DO-UNTIL

· DO-LOOP or iterative DO

DO-WHILE

Syntax:

DO WHILE(expression)

END;

Termination
When the expression becomes false

Example

ON ENDFILE(INFILE)

 MORE_RECORDS=NO;

READ FILE(INFILE) INTO(IN_REC);

DO WHILE (MORE_RECORDS)

 READ FILE(INFILE) INTO(IN_REC);

END;

DO-UNTIL

Syntax:

DO UNTIL(expression)

END;

Termination
When the expression becomes true

Example

ON ENDFILE(INFILE)

 EOF=YES;

READ FILE(INFILE) INTO(IN_REC);

IF EOF=NO

 CALL NO_REC_IN_FILE;

ELSE

 DO UNTIL (EOF)

CALL PROCESS_DATA;

READ FILE(INFILE) INTO(IN_REC);

 END;

DO-LOOP

Examples:

1.
DO I=1 TO J BY K;

END;
2.
DO K= 60 TO 1 BY -1;

3.
DO K= 1 BY 1 TO 100;

4.
DO I=K*2 TO K*5 BY J-4;

5.
DO A=0.1 TO 1 BY 0.1;

6.
DO B=1.5 TO 10 BY 0.025;

7.
DO M=1 TO 10,21 TO 30,41 TO 50;

8.
DO K=1 TO 5,8 TO 18 BY 2,50 TO 55,40 TO 44;

9.
DO J=1,8,9,11,6,13;

10.
DO K=1 TO 10 WHILE (X>100);

11.
DO I=1 TO 10,11 WHILE(A=B);

12.
DO I=1 TO 10,11 BY 0 WHILE(A=B);

13.
DO OUTCOME=‘WIN’,’LOSE’,’DRAW’;

Nested DO loops
example
DO I=1 TO 99;

 DO J=1 TO 100;

 END;

........

END;

ARRAYS

An ARRAY is a table of dataitems in which each item has the same attribute as every other item in the array.

e.g.
DCL EX_1(365)
FIXED
 DEC (4,1);

DCL EX_2(0:11)
FIXED
 DEC (5);

DCL EX_3(-5:+5)
FLOAT DEC(6);

DCL EX_4(-2:6)
FIXED BIN(15,0) INIT(10,20,30,40,50,60,70,80);

-2 is lower bound and 6 is upper bound of that array.

DIMENSIONS

The no. of sets of upper and lower bounds specifies the number of dimensions in an array.

e.g.
DCL EX_1(6,2)
FIXED DEC (5);

is a two dimensional array having 6 rows and 2 columns.

DCL EX_2(-3:3,-4:4)
FLOAT DEC (6) INIT((63)0);

SUBSCRIPTS
· Used to refer an element of an array.

e.g
EX_1(1,2) is the element belongs to first row and second column

· Subscripts may be constants, variables, or expressions.

e.g
I=3;

J=2;

T=EX_1(I,J); /* Variable Subscripts */

T=TEMP(I-J+K); /* Subscript Expressions */

I=3;

Z=X(Y(I)); /* Subscripted Subscripts */

ARRAY BUILT-IN FUNCTIONS

Function
Purpose

DIM
Provides the current extent for a specified dimension in a given array

LBOUND
Finds the current lower boundary

HBOUND
Finds the current higher boundary

SUM
Finds the sum of all elemaents in a given array

PROD
Finds the product of all elements in a given array

POLY
Used to form a polynomial expansion from two arguments

ANY
Used to test the bits of a given bit-string array

ALL
Used to test all bits of a given bit-string array

ARRAY ASSIGNMENTS

Scalar-to-Array:
 Entire array is assigned a single scalar value

DCL EX_1(12)
FIXED DEC(4,1);

EX_1=0;

Array-to-Array:

One array may be moved to another array provided the arrays have

 identical dimensions and bounds

DCL A(5,5) FLOAT DEC(6);

DCL B(5,5) FLOAT DEC(6);

A=B;

ARRAY EXPRESSIONS

Prefix Operators
Each element is effected by this operation.

e.g. A = -A;

Infix Operators

Each element is effected by this operation

e.g. B = A * 5;

 B = A * A(1,2);

 A = A + B;

Cross section

A subscript may also be an asterisk , in which case it specifies the entire

extent of the dimension.

e.g.
DCL EX1 (3,4)
FIXED DEC(3,2);

DCL EX2 (3)
FIXED DEC(3,2);

DCL EX3 (3)
FIXED DEC(3,2);

EX3 = EX1 (*,4) * EX2;

STREAM I/O

Types

· EDIT-DIRECTED I/O

· DATA-DIRECTED I/O

· LIST DIRECTED I/O
EDIT-DIRECTED I/O

Syntax

GET EDIT (data list) (format list);

PUT EDIT (data list) (format list);
e.g.

GET EDIT(EMP#,NAME,RATE,HOURS,DEDUCTIONS)

(COLUMN (1),A(6),A(20),F(4,2),F(3,1),F(5,2));

Format items

Data format items

Control format items (line,page,space control)

Remote format items

DATA FORMAT ITEMS

A(w)

A

B(w)

B

C

E(w,d)

E(w,d,s)

F(w)

F(w,d)

F(w,d,p)

X(w)

P’picture specification’

w
total no of chars/digits

d
no.of fractional decimal places

s
no.of significant digits (d + 1)

p
scaling factor

A
character notation

B
bit string notation

C
complex variables

E
floating point notation

F
fixed point notation

P
picture definition

CONTROL FORMAT ITEMS

COLUMN(n)

LINE(n)

PAGE

SKIP

DATA DIRECTED I/O

Syntax

GET DATA (datalist)

PUT DATA (datalist)

e.g.

GET DATA (A,B,C,D,E)

PUT DATA (A,B,C,D,E)

Input should be given with variable names .

e.g.
A=12,B=12,C=13,D=14,E=15

Output will be printed like this

e.g
A=12
B=12
C=13
D=14
E=15

COUNT BUILT-IN FUNCTION

Determines the number of dataitems that were transmitted during last GET or PUT.

e.g.
DCL INFILE FILE INPUT STREAM;

GET FILE (INFILE) DATA;

I=COUNT (INFILE);
STORAGE CLASSES

Types

· AUTOMATIC

· STATIC

· BASED

· CONTROLLED

AUTOMATIC STORAGE
· Unless declared to have another storage class, most variables will have the AUTOMATIC storage class.

· Storage remains allocated as long as the procedure in which it was allocated remains active.

· Storage allocated dynamically during procedure execution.It provides efficient use of main storage. Automatic variables are reinitialized at each activation of the block which they are declared.

· The allocation of dynamic storage is performed by a routine called prologue. The release of main storage that has been allocated to AUTOMATIC variables is handled by a routine epilogue.

STATIC STORAGE

· Whenever the value of a variable must be saved between different invocations of the same procedure , storage for that variable has to be allocated statically.

· In this case storage allocated before execution of the program and remains allocated throughout the entire execution of the program. Defined with attribute STATIC.

· Static variables are initialized only once - before execution of a program begins.

e.g. DCL TABLE

BASED STORAGE

· The storage class of a variable determines the way in which the address of the variable is obtained.With BASED storage the address the address is contained in a pointer variable .
e.g.
DCL P

POINTER;

DCL A(100)
FIXED DEC(5) BASED (P);

BASED (P)
Indicates that the address of the A array is determined by the contents of P.

POINTER VARIABLES

· A poniter variable is a special type of variable you can use to locate data - i.e to ‘point’ to data in main storage.

· Before a reference can be made to a based variable , a value must be given to the pointer . This can be done in one one of the following ways.

1. By assignment of the value returned by the ADDR built-in function. This facilitates Overlay-definig of identifiers that do not have same base, scale and precision.

e.g.
DCL VALUE1 BIT (32) BASED (P);

DCL VALUE2 FLOAT (6);

P=ADDR(VALUE2);

2. By assignment of the value of another pointer. Facilitates POINTER values for subsequent use by the program.

e.g.

DCL (P,Q) POINTER;

P=ADDR(AREA);

Q=P;

3. With the SET option of a READ or LOCATE statement. Faciliatates processing of records in their buffers rather than in storage work areas.

e.g.

READ FILE(INPUT) SET(P);

LOCATE FILE (OUTPUT) SET(Q);

4. By an ALLOCATE statement. Facilitates List processing.

 e.g.
DCL (P,Q) POINTER;

DCL AREA CHAR(100) BASED(P);

ALLOCATE(AREA);

ALLOCATE(AREA) SET(Q);

SIMULATE OVERLAY DEFINING

e.g.
DCL A(100) FIXED BIN(31);

DCL B(50) FLOAT DEC(6) BASED P;

DCL P POINTER;

P = ADDR(A);

SAVING POINTER VARIABLES FOR SUBSEQUENT USE

e.g.
DCL ARRAY(25)
FLOAT DEC(6);

DCL P

POINTER;

DCL Q

POINTER;

P=ADDR(ARRAY);

Q=P;

USING BASED VARIABLES TO PROCESS DATA IN BUFFERS

· Data processing for files can be done using two modes. The first one is move mode , in which data record moved into or from program storeage via a buffer.

· The second one is processing data directly in a buffer with out moving data , this is termed as locate mode can be done using BASED variables. Locate mode is applicable to only BUFFERED SEQUENTIAL files.

e.g.
DCL P

POINTER;

DCL 1 IN_REC
BASED (P),

 2 A

PIC ‘99’,

 2 B

CHAR (8),

 2 C

FIXED DEC (7,2),

 2 REST

CHAR(66);

READ
FILE (INFILE) SET(P);

LOCATE
FILE(OUTFILE) SET(P);

CONTROLLED STORAGE
· CONTROLLED storage is used to create stack. It is similar to BASED storage in that programmer has a greater degree of control in the allocation of storage than for AUTOMATIC or STATIC storage.

CONTROLLED ATTRIBUTE
· Arrays, structures, or scalar variables may be declared to have the CONTROLLED attribute.

e.g.
DCL A(100) FIXED DEC (5) CONTROLLED;

DCL 1 S

 CONTROLLED;

 2 T
FLOAT BIN (16),

 2 U
FIXED DEC (7);

· The storage for controlled variables is allocated in your program by the ALLOCATE statement and released by the FREE statement.

e.g.
DCL A(100)
FIXED DEC(5) CONTROLLED;

ALLOCATE A;

GET LIST (A);

TOTAL = SUM / A;

FREE A;

· Storage remains allocated until the execution of a FREE statement even though the termination of block which it was defined.

· By using ALLOCATE statement we can establish the size of the array during the execution of the program.

e.g.
DCL ARRAY(I,J) FIXED DEC (5) CONTROLLED;

GET LIST (I,J);

ALLOCATE ARRAY(I,J);

ALLOCATION BUILT-IN FUNCTION

· Determines whether or not storage is allocated for a controlled variable and returns an appropriate indication to the point of indication.

e.g.
J=ALLOCATION(N);

J
‘1’B if the storage has been allocated for X ,

‘0’B othewise.

LIST PROCESSING

List Processing is a method of processing data without altering the physical location of items within the list.

TYPES

1. Sequential List

2. Linear List

3. Circular List

4. Bidirectional List

5. Binary Tree

6. Stacks

FILE PROCESSING

FILE ORGANIZATIONS

1. CONSECUTIVE
(sequential)

2. INDEXED

(indexed sequential)

3. REGIONAL
(direct or random)

4. VSAM

· ESDS(entry-sequenced)

· KSDS(key-sequenced)

· RRDS(relative-record)

FILE ACCESS TECHNIQUES

1. SEQUENTIAL

2. DIRECT

DECLARING FILES

syntax:

DCL
file-name

FILE

EXTERNAL/INTERNAL

STREAM/RECORD

INPUT/OUTPUT/UPDATE

BUFFERED/UNBUFFERED

BACKWARDS

KEYED

SEQUENTIAL/DIRECT

ENVIRONMENT (option-list);

The following table shows the list of options for ENVIRONMENT attribute

Purpose
ENV attribute options

Record Format
F/FB/V/VB/U

RECSIZE(record-size)

BLKSIZE(block-size)

BUFFERS(n)

Type of file organization
CONSECUTIVE

INDEXED

VSAM

REGIONAL(1/2/3)

Magnetic tape options
LEAVE

REREAD

Indexed sequential file options
KEYLENGTH(n)

KEYLOC(n)

INDEXAREA(index-area-size)

ADDBUFF(n)

REGION(2) or REGION(3) file options
KEYLOCK(n)

KEYLENGTH(n)

Printer Options
CTLASA

CTL360

VSAM file options
PASSWORD

BUFND(n)

BUFNI(n)

BUFSP(n)

examples:

DCL
FILE1

FILE

RECORD

OUTPUT

SEQUENTIAL

BUFFERED

EXTERNAL

ENV(CONSECUTIVE VB BLKSIZE(1252) RECSIZE(104) BUFFERS(2));

DCL
FILE2

FILE

RECORD

UPDATE

DIRECT

UNBUFFERED

EXTERNAL

KEYED

ENV(INDEXED FB BLKSIZE(900) RECSIZE(150) KEYLOC(5) KEYLENGTH(7)

INDEXAREA ADDBUFF);

OPEN STATEMENT
Syntax:

OPEN FILE (filename) additional attributes;

Operating System
Additional attributes

DOS or DOS/VS
PAGESIZE

INPUT and OUTPUT

TITLE

OS or OS/VS
BUFFERED/UNBUFFERED

STREAM/RECORD

INPUT/OUTPUT/UPDATE

PRINT/LINESIZE/PAGESIZE

DIRECT/SEQUENTIAL

BACKWARDS

KEYED

TITLE

e.g.
OPEN FILE(ACCTREC) TITLE(‘AR’);

I/O STATEMENTS

READ

FILE(filename) INTO(variable)
 KEY(expression)

READ
FILE(filename) SET(P);

WRITE

FILE(filename) FROM(variable) KEYFROM(expression)

LOCATE
FILE(filename) SET(P);

REWRITE
FILE(filename) FROM(variable) KEY(expression)

DELETE
FILE(filename) KEY(expression)

ON-UNITS

KEY CONDITION

This condition is raised during the following operations

· When the keyed record not found

· An attempt to made duplicate record key

· The key has not been correctly specified

· No space is available to add the keyed record

e.g.
ON KEY(FILE1)

 BEGIN;

.....

....

 END;

UNDEFINEDFILE CONDITION

This condition is raised whenever an attempt to open a file is unsuccessful. This condition is always enabled and cannot be disabled.

some of the causes are

1. A conflict in attributes exists(e.g.opening CONSECUTIVE dataset with DIRECT attribute)

2. Attributes are incompatable(e.g.no keylength is defined for indexed datasets)

RECORD CONDITION
This condition can be raised during READ,WRITE, or REWRITE operation. This condition is always enabled and cannot be disabled.

BUILT-IN FUNCTIONS

ONKEY FUNCTION

Extracts the value of the key for the record that caused an I/O condition to be raised.

e.g.
DCL KEY_IN_ERROR

CHAR(9) VARYING;

DCL ONKEY

BUILTIN;

ON KEY(FILE1)

 BEGIN;

KEY_IN_ERROR = ONKEY;

..........

 END;

ONFILE FUNCTION

Determines the name of the file for which an I/O or CONVERSION condition was raised.

e.g.
DCL NAME

CHAR(31) VARYING;

DCL ONFILE

BUILTIN;

ON FILE(FILE2)

 BEGIN;

NAME = ONFILE;

...............

 END;

REFERENCES

1.PL/I structured programming

JOAN K HUGHES ,3rd e/d, John Wiley & Sons

2.Programming Languages

ALLEN B TUCKER, Mc Graw Hill

3.Structured Programming using PL/I
J.N.P HUME & R.C HOLT, Prentice-Hall Co

10
Satyam Computer Services Ltd.

