Virtual Storage Assess Method
(VSAM)

VSAM
· Course Coverage

· VSAM Concepts

· Internal Organization

· Alternate Indexes

· AMS Commands

· VSAM Dataset allocation

· AIX Allocation

· Loading Datasets

· Print,Copy and Alter Command

· Processing KSDS w/o AIX

· Processing KSDS with AIX

· Processing ESDS, if time permits

Basic Concepts
· What is VSAM ?

· Virtual Storage Access Method (VSAM) is a high performance access method used in IBM mainframe OS

· VSAM resides in Virtual Storage along with the program that needs its services for manipulation of data on DASD

· VSAM arranges records by an index key or by relative byte addressing.

· VSAM is used for direct or sequential processing of fixed and variable-length records on DASD.

· Data organized by VSAM is cataloged for easy retrieval, and is stored in one of four types of data sets.

Basic Concepts
· What is Access Method Services (AMS)?

· Is a service program that helps in allocate, maintain and delete catalogs and datasets.

· Consists of IDCAMS

· IDCAMS - Multipurpose utility
· Allocating, maintaining and deleting Catalogs

· Allocating, maintaining and deleting VSAM Datasets

· Reorganizing and Printing Datasets

· Cataloging non-VSAM datasets & GDG

· Defining page space for MVS OS

Advantages & Drawbacks Of VSAM
· Advantages
· The retrieval of records is faster because of an efficiently organized index. The index is small because of key compression algorithm used to store and retrieve records

· Imbedded free space makes the insertion of records easy and therefore requires less reorganization

· The deletion of records means that they are physically deleted thus allowing the reclaiming of free space within datasets

· Records can be accessed randomly by key or address and can also be accessed sequentially at the same time

· VSAM datasets can be shared across partitions, regions, address space and systems. The type and level of sharing can be controlled thru AMS and JCL

Advantages & Drawbacks Of VSAM
· Advantages (contd)
· VSAM provides data security thru passwords protection of datasets at various levels like read and update

· VSAM provides the ability to physically distribute datasets over various volumes based on key ranges

· VSAM datasets are device independent

· Drawbacks

· Free spaces, hence more disk space

· Integrity of VSAM datasets in cross systems and cross regions sharing must be controlled by the User

Types of VSAM Datasets

· Entry-sequenced data set (ESDS)

 Contains records in the order in which they were entered. Records are added to the end of the data set, and can be accessed.

· Key-sequenced data set (KSDS)
 Contains records in ascending collating sequence, and can be accessed by a field, called a key, or by a relative byte address.
· Linear data set (LDS)

Contains data that has no record boundaries. Linear data sets contain none

of the control information that other VSAM data sets do. Linear data sets

must be cataloged in an integrated catalog facility catalog.

· Relative record data set (RRDS)
 Contains records in order by relative record number, and can be accessed only by this number. There are Fixed & Variable types of relative record data sets.

Organising VSAM Datasets

· A data set consists of a data component and, additionally, an index component for a KSDS

· Each component consists of one or more CAs
· A CA may consist of many CIs

· A CI may have one or more records

· For a data component, a record may span many CI

Control Intervals
A control interval consists of:

· Logical records

· Free space

· Control information fields.

Control Information Fields (CIDF & RDF)

 Control information consists of two types of fields: one control interval definition field (CIDF), and one or more record definition fields (RDFs).

Control Area
· CIDFs are 4 bytes long, and contain information about the control interval, including the amount and location of free space.

· RDFs are 3 bytes long, and describe the length of records and how many adjacent records are of the same length. If two or more adjacent records have the same length, only two RDFs are used for this group. One RDF gives the length of each record, and the other gives the number of consecutive records of the same length.

· Control Areas (CA)

· The control intervals in a VSAM data set are grouped together into fixed-length contiguous areas of direct access storage called control areas.

· A VSAM data set is composed of one or more control areas (minimum 2 CIs)

· The number of control intervals in a control area is fixed by VSAM.

· The maximum size of a control area is one cylinder, and the minimum size is one track of DASD storage.

· Min. size of CA is one track, Max. size is one cylinder

· Free CIs may be left within CA
Control Area
· Free Space

· Free Space left within CI that is used when new records are added to CI

· Free CI’s left within a CA that are used when new record additions cannot fit into particular CI

· Free CA’s left within a dataset that are utilized after all the free CI’s in a particular CA have been used and none of the CI’s in that CA can accommodate the record being inserted

· For ESDS, free space is left only at the end of dataset

· For ESDS, no imbedded free space between CI’s or CA’s

· For RRDS, no free space is allocated

SPANNED Records
· Spanned Records

· Sometimes a record is larger than the control interval size used for a particular data set.

· In VSAM, the SPANNED parameter allows a record to extend across or span control interval boundaries.

· Spanned records might reduce the amount of DASD space required for a data set when data records vary significantly in length, or when the average record length is larger compared to the CI size.

Data Set With Spanned Records
SPANNED Records
· Remember
· A spanned record always begins on a control interval boundary and fills more than one control interval within a single control area.

· For key-sequenced data sets, the entire key field of a spanned record must be in the first control interval.

· The control interval containing the last segment of a spanned record might also contain unused space. You can use the unused space only to extend the spanned record; it cannot contain all or part of any other record.

· Spanned records can only be used with key-sequenced data sets and entry-sequenced data sets.

· To span control intervals, you must specify the SPANNED parameter when you define your data set. VSAM decides whether a record is SPANNED or NONSPANNED, depending on the control interval length and the record length.

· Locate mode (OPTCD=LOC on the RPL) is not a valid processing mode for spanned records. A nonzero return code will be issued if locate mode is used.

VSAM Data Set Type
Entry Sequenced Dataset

Key-Sequenced Dataset
Relative Record Dataset

Comparison of Indexed Sequential & KSDS

Characteristics

Indexed Seq.

KSDS

Dataset Allocation

JCL-DISP- New

AMS-IDCAMS

Dataset Deletion

JCL-DISP-Delete

AMS-IDCAMS

AIX Support

 No

Yes

Deleting Records

Logical Delete

Physical Delete

Reorg. of DS

 Needed more often
 Needed Less

Disk Space Req

Less

 Greater

Concurrent Seq and
Not supported unless
Supported in one

Random access

two DCB are created
 access control blk

Physical Sequential and ESDS

Characteristics

Physical Sequential

ESDS

Dataset allocation

JCL-DISP-NEW

AMS-IDCAMS

Dataset Deletion

JCL-DISP-Delete

AMS-IDCAMS

Records Altered

Yes- no length change
Yes

AIX Supported

No

 Yes (up to 253)

Random Access

No

Yes

Supported in CICS
Yes

 Yes

Non-DASD Support
 Yes

 No

Access of VSAM Records
· Accessing Records in a VSAM Data Set

We can use addressed-sequential and addressed-direct access for:

· Entry-sequenced data sets

· Key-sequenced data sets

We can use keyed-sequential, keyed-direct, and skip-sequential access for:

· Key-sequenced data sets

· Fixed-length RRDSs

· Variable-length RRDS

 All types of VSAM data sets, including linear, can be accessed by control interval access, but this is used only for very specific applications. CI mode processing is not permitted when accessing a compressed data set. The data set can be opened for CI mode processing to allow for VERIFY and VERIFY REFRESH processing only.

Access of VSAM Records
Entry-Sequenced Data Set

· Entry-sequenced data sets are accessed by address, either sequentially or directly. When addressed sequential processing is used to process records in ascending relative byte address (RBA) sequence, VSAM automatically retrieves records in stored sequence.

· To access a record directly from an entry-sequenced data set, you must supply the RBA for the record as a search argument.

· Skip-sequential processing is not supported for entry-sequenced data sets.

Access of VSAM Records
Key-Sequenced Data Set

 The most effective way to access records of a key-sequenced data set is by key using the associated prime index or by one of the alternate keys using Alternate index .

· Keyed-Sequential Access

· Sequential access is used to load a key-sequenced data set and to retrieve, update, add, and delete records in an existing data set.

· When you specify sequential as the mode of access, VSAM uses the index to access data records in ascending or descending sequence by key.

· Sequential processing can be started anywhere within the data set. Positioning is necessary if your starting point is within the data set.

· Positioning can be done by * Using the POINT macro or * Issuing a direct request, then changing the RPL with the MODCB macro from "direct" to "sequential.”

· Sequential access allows you to avoid searching the index more than once and is faster than direct for accessing multiple data records in ascending key order.

Access of VSAM Records
Key-Sequenced Data Set

· Keyed-Direct Access

· Direct access is used to retrieve, update, delete and add records.

· When direct processing is used, VSAM searches the index from the highest level index-set record to the sequence-set for each record to be accessed.

· Searches for single records with random keys is usually done faster with direct processing.

· You need to supply a key value for each record to be processed.

· For retrieval processing, you can either supply the full key or a generic key. The generic key is the high-order portion of the full key.

· Direct access allows you to avoid retrieving the entire data set sequentially to process a small percentage of the total number of records.

Access of VSAM Records
Key-Sequenced Data Set

· Skip-Sequential Access
· Skip-sequential access is used to retrieve, update, delete, and add records. When skip-sequential is specified as the mode of access, VSAM retrieves selected records, but in ascending sequence of key values.

· Skip-sequential processing allows you to:

· Avoid retrieving the entire data set sequentially to process a small percentage of the total number of records

· Avoid retrieving the desired records directly, this causes the prime index to be searched from the top to the bottom level for each record

· Addressed Access
· Another way of accessing a key-sequenced data set is addressed access, using the RBA of a logical record as a search argument.

· Note that RBAs might change when a control interval split occurs or when records are added, deleted, or changed in size.

Access of VSAM Records
Fixed-Length Relative Record Data Set
 The RRN is always used as a search argument for a fixed-length RRDS.

· Keyed-Sequential Access: Sequential processing of a fixed-length RRDS is the same as sequential processing of an entry-sequenced data set. Empty slots are automatically skipped by VSAM.
· Skip-Sequential Access: Skip-sequential processing is treated like direct requests, except that VSAM maintains a pointer to the record it just retrieved. When retrieving subsequent records, the search begins from the pointer, rather than from the beginning of the data set. Records must be retrieved in ascending sequence.

· Keyed-Direct Access: A fixed-length RRDS can be processed directly by supplying the relative record number (RRN) as a key. VSAM converts the relative record number to an RBA and determines the control interval containing the requested record. If a record in a slot flagged as empty is requested, a "no-record-found" condition is returned.

Access of VSAM Records
Variable-Length Relative Record Data Set
The RRN is used as a search argument for a variable-length RRDS.

· Keyed-Sequential Access: Sequential processing of a variable-length RRDS is the same as for an entry-sequenced data set. On retrieval, relative record numbers that do not exist are skipped. On insert, if no relative record number is supplied, VSAM uses the next available relative record number.

· Skip-Sequential Access: Skip-sequential processing is used to retrieve, update, delete, and add variable-length RRDS records. Records must be retrieved in ascending sequence.

· Keyed-Direct Access: A variable-length RRDS can be processed directly by supplying the relative record number as a key. If you want to store a record in a specific relative record position, use direct processing and assign the desired relative record number. VSAM uses the relative record number to locate the control interval containing the requested record. You cannot use an RBA value to request a record in a variable-length RRDS.

Access of VSAM Records
Variable-Length Relative Record Data Set
· Relative Byte Address
· Records of KSDS or ESDS’s can be accessed

· RBA in KSDS might change because of reorg. , CI split or CA spilt.

· RBA in ESDS never changes

· Limited application as it is difficult to establish a relationship between an RBA and a key field

· Relative Record Number (RRN)

· Fastest Access Method

· For RRDS, this is only method

ALTERNATE INDEX

Alternate Index
· Alternate Index on ESDS
· No Primary key for ESDS

· Alternate index based on RBA

· Both Unique and non-unique Alternate key possible

· Alternate Index are always KSDS , irrespective of what kind of base cluster is

· Alternate Index Path

· Before accessing a base cluster through an alternate index, a path must be defined. A path provides a way to gain access to the base data through a specific alternate index. You define a path with the access method services command DEFINE PATH.

· A path is an entry in the VSAM catalog that establishes a logical link between an alternate index cluster and base cluster

Defining a VSAM Data Set
· Defining a VSAM Data Set

 VSAM data sets are defined using either access method services commands or JCL dynamic allocation.

1. VSAM data sets must be cataloged. If you wish to use a new catalog, use access method services commands to create a catalog.

2. Define a VSAM data set in the catalog using the TSO ALLOCATE command, or access method services ALLOCATE or DEFINE CLUSTER command, dynamic allocation, or JCL.

3. Load the data set with data either by using the access method services REPRO command, or by writing your own program to load the data set.

4. Optionally, define any alternate indexes and relate them to the base cluster. Use the access method services DEFINE ALTERNATEINDEX, DEFINE PATH, and BLDINDEX commands to do this.

5. After any of above steps, use the access method services LISTCAT and PRINT commands to verify what has been defined, loaded, and processed.

AMS COMMANDS
· General Usage

· DEFINE CLUSTER : Creates a catalog entry for VSAM object

· DEFINE ALTERNATE INDEX (AIX) : define alternate index for base cluster

· DEFINE PATH : Define a path to access VSAM dataset thru AIX key

· DEFINE GDG : Define a generation data group

· DELETE : Deletes one or more VSAM objects and their catalogs

· LISTCAT : Lists information contained in VSAM catalog

· PRINT : Print contents of VSAM or indexed-sequential data set (hexa or character formats)

· REPRO : Copies a VSAM or sequential or indexed-sequential dataset into another VSAM or sequential or indexed-sequential dataset or copies catalog to another catalog

· VERIFY : Closes all open files, brings the index component up to date with data component and verifies & corrects information in a catalog

AMS COMMANDS
· Special Usage
· ALTER : Change catalog information about an already cataloged VSAM object
· BLDINDEX : Initially load a newly defined alternate index

· EXPORT : Unloads VSAM base cluster or AIX together with its catalog entry into movable storage volume or alternatively copies a user catalog and then disconnects that catalog from system’s master catalog

· IMPORT : Defines and loads a dataset or catalog that had been unloaded via EXPORT.
AMS Commands
 Define Cluster
· Cluster Concept
· For a key-sequenced data set, a cluster is the combination of the data component and the index component. The cluster provides a way to treat the index and data components as a single component with its own name.

· Fixed-length RRDSs, entry-sequenced data sets, and linear data sets are considered to be clusters without index components. To be consistent, they are given cluster names that are normally used when processing the data set.

· Defining a Data Set Using Access Method Services
· VSAM data sets can be defined with either the DEFINE CLUSTER command or the ALLOCATE command. When a cluster is defined, VSAM uses the following catalog entries to describe the cluster:

· A cluster entry describes the cluster as a single component.

· A data entry describes the cluster's data component.

· For a key-sequenced data set, an index entry describes the cluster's index component.

AMS Commands
 Define Cluster
· Naming a Cluster
· Specify a name for the cluster, dsname in JCL, when defining it.

· A cluster name that contains more than 8 characters must be segmented by periods; 1 to 8 characters can be specified between periods. A name with a single segment is called an unqualified name.

· A name with more than 1 segment is called a qualified name. Each segment of a qualified name is called a qualifier.

· You can, optionally, name the components of a cluster. If you do not explicitly specify a data or index component name when defining a VSAM data set or alternate index, VSAM will generate a name.

· VSAM uses the following format to generate names for both system-managed and non-system-managed data sets:

EXAMPLE: Cluster name: SALES.REGION2.CLUSTER

 Generated data name = SALES.REGION2.DATA

 Generated index name = SALES.REGION2.INDEX

AMS Commands
 Define Cluster
· Prerequisites of dataset allocation
· Knowledge of VSAM Catalogs

· Basic Needs for defining a cluster
· volumes

· Type (KSDS, ESDS, RRDS)

· Space Req

· Key Length

· Record Size

· Size of CI

· Free Space

· Name

Some Commonly Used Parameters
· Name

· Cylinders, Tracks, Records : Space allocation for dataset
· Suballocation | Unique

· Suballocation indicates that the components of this VSAM dataset are to be suballocated from an existing space on volume. A data space must exist if this parm is used

· Unique indicates that the space is to be built and assigned to each component of cluster

· Indexed/Numbered/Nonindexed/Linear - type of data organisation
· Erase/Noerase

· Erase , data component is physically deleted

· No Erase , Only entry removed from the catalog

· Freespace (CI Percent CA Percent)

· Keys (length, offset)

Some Commonly Used Parameters
· Spanned/Nonspanned
· if the max. record length is more than the CI size specified, allocation will fail unless Spanned is specified

· Imbed
· The sequence set of the index component of a KSDS is placed on the first track of the data component and is replicated as many times as possible

· It reduces the seek time it takes the read write head to move from the index to the data component

· Replicate

· What Imbed does to sequence set, Replicate does for an index set.

· It forces each CI of the index set of the index component to be written on a separate track and replicated as many times as possible

· The replication factor reduces the rotational delay

Some Commonly Used Parameters
· SHAREOPTIONS

· SHAREOPTION(cross region,cross sys)

· Cross Region

· Different regions within same CPU

· Possible values : 1 2 3 4

· Recommended value 1 or 2

· Cross System
· Different regions on multiple CPU’s

· Possible Values 3 4

· Recommended 3

· Share Option 1

· Either one user can update or many users can read the data. Ensures complete read and write integrity

Some Commonly Used Parameters
· Share Option 2

· Allows multiple users to read a dataset at the same time one user can update it. Provides write integrity but not read

· Share Option 3

· Multiple users can read and write at same time. NO read , write integrity provided. User application responsible for integrity

· Share Option 4

· Same as 3, but buffer used for direct processing are refreshed each time an i/o is performed on the dataset.
Defining A KSDS

//DEFKSDS EXEC=IDCAMS

//SYSIN DD *

DEFINE CLUSTER (NAME(EMPLOYEE.KSDS.CLUSTER) -

 VOLUMES(VSAM02) -

CYLINDERS(2,1) -

CONTROLINTERVALSIZE(4096) -

FREESPACE(10,20) -

KEYS(9,0) -

RECORDSIZE(50,50) -

 DATA (NAME(EMPLOYEE.KSDS.DATA) -

 CISZ (4096))

 -

 INDEX (NAME(EMPLOYEE.KSDS.INDEX) -

 CONTROLINTERVALSIZE(1024)) -

 CATALOG(VSAM.USERCAT.TWO)

Defining a ESDS

//DEFESDS EXEC=IDCAMS

//SYSIN DD *

DEFINE CLUSTER (NAME (EMPLOYEE.ESDS.CLUSTER) -

VOLUMES(VSAM02) -

CYLINDERS(2,1) -

CONTROLINTERVALSIZE(4096) -

RECORDSIZE(50,50) -

NONINDEXED -

DATA (NAME(EMPLOYEE.ESDS.DATA))

CATALOG(VSAM.USERCAT.TWO)

Defining a RRDS

//DEFRRDS EXEC=IDCAMS

//SYSIN DD *

DEFINE CLUSTER (NAME (EMPLOYEE.RRDS.CLUSTER) -

VOLUMES(VSAM02) -

CYLINDERS(2,1) -

CONTROLINTERVALSIZE(4096) -

RECORDSIZE(50,50) -

NUMBERED -

DATA (NAME(EMPLOYEE.RRDS.DATA))

CATALOG(VSAM.USERCAT.TWO)

REPRO
Alternate Index Allocation
 An alternate index is a key-sequenced data set containing index entries organized by the alternate keys of its associated base data records. It provides another way of locating records in the data component of a cluster. An alternate index can be defined over a key-sequenced or entry-sequenced cluster.

· Enables to look at base cluster as it it was sequenced on a field other than prime key field

· It is different dataset physically. Always a KSDS with its own Index and data component.Can be created on KSDS and ESDS but not on RRDS

· Requires twice the number of I/O compared to Prime key field access

· Up to 253 AIX

· Prime key and AIX key may overlap but cannot start from same location

· Unique and Non-unique AIX key

· Must be defined on the same catalog as base cluster

Alternate Index Allocation
 The sequence for building an alternate index is as follows:

· Define the base cluster, using either the ALLOCATE command, the DEFINE CLUSTER command, or JCL.

· Load the base cluster either by using the REPRO command or by writing your own program to load the data set.

· Define the alternate index, using the DEFINE ALTERNATEINDEX command.

· Relate the alternate index to the base cluster, using the DEFINE PATH command. The base cluster and alternate index are described by entries in the same catalog.

· Build the alternate index, using the BLDINDEX command.

Alternate Index Allocation
· Command Used to Create AIX
· DEFINE AIX

· Allocate space

· BLDINDEX

· Load index

· DEFINE PATH
· Develop Bridge between AIX & Base

· Alternate Index Maintenance

· All the alternate indexes of a given base cluster that have the UPGRADE attribute belong to the upgrade set.

· The upgrade set is updated whenever a base data record is inserted, erased, or updated.

AIX ON A KSDS
· Base Cluster Must Exist before creating AIX

· Base Cluster must not be Empty

//DEFAIX1 EXEC PGM=IDCAMS

//SYSIN DD *

DEFINE AIX (NAME EMPLOYEE.KSDS.AIX1.CLUSTER) -

RELATE (EMPLOYEE.KSDS.CLUSTER) VOLUMES(VOL1) -

CISZ(2048) KEYS(2,35) UNIQUEKEY UPGRADE -

RECORDSIZE(16,16) FREESPACE(20,20) -

SHAREOPTION(2,3) -

DATA (NAME(EMPLOYEE.KSDS.AIX1.DATA)) -

INDEX(EMPLOYEE.KSDA.AIX1.INDEX))

Record length of unique key alternate index = 5 + length of alt key + length of prime key

 -

Nonunique AIX on a KSDS
//DEFAIX2 EXEC PGM=IDCAMS

//SYSIN DD *

DEFINE AIX (NAME EMPLOYEE.KSDS.AIX2.CLUSTER) -

RELATE (EMPLOYEE.KSDS.CLUSTER) VOLUMES(VOL1) -

CISZ(2048) KEYS(2,35) NONUNIQUEKEY -

UPGRADE -

RECORDSIZE(29,56) -

FREESPACE(20,20) -

SHAREOPTION(2,3) -

DATA (NAME(EMPLOYEE.KSDS.AIX2.DATA)) -

INDEX(EMPLOYEE.KSDA.AIX2.INDEX))
Record length of nonnique key alternate index =

 5 + length of alt key + n * length of prime key
AIX On An ESDS
 Cobol Compiler does not support AIX on ESDS in batch environment. It can be used in CICS. Assembler Support AIX on ESDS

//ESDSAIX1 EXEC PGM=IDCAMS

//SYSIN DD *

DEFINE AIX (NAME EMPLOYEE.ESDS.AIX1.CLUSTER) -

RELATE (EMPLOYEE.ESDS.CLUSTER) -

VOLUMES(VOL1) CISZ(2048) KEYS(2,35) -

UNIQUEKEY UPGRADE RECORDSIZE(11,11) -

FREESPACE(20,20) SHAREOPTION(2,3) -

DATA (NAME(EMPLOYEE.ESDS.AIX1.DATA)) -

INDEX(EMPLOYEE.ESDA.AIX1.INDEX))

Record length = 5 + length of alt key + 4 (RBA)
BLDINDEX
· Loads data into AlX

· Base Cluster must be allocated & loaded

· The AIX cluster must be allocated

//KSDSBLD1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//BASE DD DSN=EMPLOYEE.KSDS.CLUSTER,DISP=OLD

//AIX1 DD DSN=EMPLOYEE.KSDS.AIX1.CLUSTER,

// DISP=OLD

//SYSIN DD *

BLDINDEX

INFILE(BASE) -

OUTFILE(AIX1) -

//*

BLDINDEX
or

//SYSIN DD *

BLDINDEX

INDATASET(EMPLOYEE.KSDS.CLUSTER)

OUTDATASET(EMPLOYEE.KSDS.AIX.CLUSTER)

//*

Define Path

· Bridge between base cluster and alternate index

· It is not a dataset

//sysin dd *

 DEFINE PATH -

 (NAME(EMPLOYEE.KSDS.PATH1) -

 PATHENTRY(EMPLOYEE.KSDS.AIX1.CLUSTER) -

 UPDATE

· Printing of Records Thru PATH
· PRINT -

 INDATASET(EMPOLYEE.KSDS.PATH1) -

 CHAR

 The output provides the records of the base cluster in the alternate key sequence of the index over which the path has been defined.

Define Path

· Difference between AIX and Path
 An alternate index cluster is a dataset with alternate key-pointer pair records loaded into it. Accessing it by its name gives us only these key-pointer records. A PATH, while named like any dataset , does not occupy any data space, because it is not a physical entity. Accessing it by its name gives us the records of the base cluster in the alternate key sequence.

COBOL Coding for VSAM Files
 ENVIRONMENT DIVISION Entries

 After identifying and describing the VSAM files in the ENVIRONMENT DIVISION and the DATA DIVISION, process the records in the files in the PROCEDURE DIVISION of your program.
· ENVIRONMENT DIVISION Entries for VSAM Files

Example 1: VSAM Sequential File

SELECT S-FILE ASSIGN TO SEQUENTIAL-AS-FILE

ORGANIZATION IS SEQUENTIAL

ACCESS IS SEQUENTIAL

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

COBOL Coding for VSAM Files
 ENVIRONMENT DIVISION Entries

Example 2: VSAM Indexed File

 SELECT I-FILE ASSIGN TO INDEXED-FILE

ORGANIZATION IS INDEXED

ACCESS IS DYNAMIC

RECORD KEY IS IFILE-RECORD-KEY

ALTERNATE RECORD KEY IS IFILE-ALTREC-KEY

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

Example 3: VSAM Relative File

 SELECT R-FILE

ASSIGN TO RELATIVE-FILE

ORGANIZATION IS RELATIVE

ACCESS IS RANDOM

RELATIVE KEY IS RFILE-RELATIVE-KEY

FILE STATUS KEY IS FSTAT-CODE VSAM-CODE.

COBOL Coding for VSAM Files
 Data DIVISION Entries

· Fixed-Length Records

 The compiler determines the records to be fixed length if

· you use the RECORD CONTAINS integer clause.

· Omit the RECORD CONTAINS integer clause but define all the level-01 record description entries associated with the file to be the same fixed size

· Variable-Length Records

The compiler determines the records to be variable-length if

· use the RECORD IS VARYING FROM integer-1 TO integer-2)

· Omit the RECORD clause, but code multiple level-01 records that are of different sizes, or contain an OCCURS DEPENDING ON clause.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
 VSAM file processing involves following COBOL statements :

OPEN : Connect the VSAM data set to your COBOL program for processing.

WRITE : Add records to a file or load a file.

START : Establish the current location in the cluster for a READ NEXT statement. START does not retrieve a record; it only sets the current record pointer

READ and READ NEXT : Retrieve records from a file.

REWRITE : Update records.

DELETE : Logically remove records from indexed and relative files only.

CLOSE : Disconnect the VSAM data set from your program.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· File Position Indicator
· The file position indicator marks the next record to be accessed for sequential COBOL requests.

· You do not set the file position indicator anywhere in your program; it is set by successful OPEN, START, READ, and READ NEXT statements.

· Subsequent READ or READ NEXT requests use the established file position indicator location and update it.

· The file position indicator is not used or affected by the output statements WRITE,REWRITE, or DELETE. The file position indicator has no meaning for random processing.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· Error Processing for VSAM
· All errors in processing a VSAM file, whether logical errors in your program or input/output errors on the external storage media, return control to your COBOL program.

· When an input/output statement operation fails, COBOL will not perform corrective action for you; control is returned to your program.

· You choose whether your program will continue running after a less-than-severe input/output error occurs.

· COBOL provides these ways to intercept and handle certain VSAM input/output errors:

· End-of-file phrase (AT END).

· EXCEPTION/ERROR declarative.

· FILE STATUS clause (file status key and VSAM return code).

· INVALID KEY phrase.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· Opening an Empty File

To open a file that has never contained records (an empty file):

· Use OPEN OUTPUT for ESDS files.

· Use OPEN OUTPUT or OPEN EXTEND for KSDS and RRDS files. If you have coded the file for random or dynamic access,you can also use OPEN I-O if the file is optional.

· Initially Loading Records Sequentially into a File

 Initially loading a file means writing records into the file for the first time. This is not the same as writing records into a file that has contained records that have all been deleted.

To initially load a VSAM file:

· Open the file.

· Use sequential processing because it is faster (ACCESS IS SEQUENTIAL).

· Use WRITE to add a record to the file.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· Opening a Loaded File (a File with Records)

 To open a file that already contains records, use OPEN INPUT, OPEN I-O, or OPEN EXTEND.

· Reading Records from a VSAM File

· Use the READ statement to retrieve (READ) records from a file. To read a record, you must have opened the file INPUT or I-O. Check the file status key after each READ.

· Records in VSAM sequential files can only be retrieved in the sequence in which they were written.

· Records in VSAM indexed and relative record files can be retrieved:

Sequentially : According to the ascending order of the key you are using, the RECORD KEY or the ALTERNATE RECORD KEY, beginning at the current position of the file position indicator for indexed files, or according to ascending relative record locations for relative files.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
Randomly : In any order, depending on how you set the RECORD KEY or ALTERNATE RECORD KEY or the RELATIVE KEY before your READ request.

Dynamically : Mixed sequential and random.

· Updating Records in a VSAM File

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· Adding Records to a VSAM File
 The COBOL WRITE statement adds a record to a file, without replacing any existing records. Check the file status key after each WRITE statement.
Adding Records Sequentially
· Use ACCESS IS SEQUENTIAL and code the WRITE statement to add records sequentially to the end of a VSAM file that has been opened with either OUTPUT or EXTEND.

· For indexed files, new records must be written in ascending key sequence. If the file is opened EXTEND, the record keys of the records to be added must be higher than the highest primary record key on the file when the file was opened.

· For relative files, the records must be in sequence. If you include a RELATIVE KEY data-item in the SELECT clause the relative record number of the record to be written is placed in that data item.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
Adding Records Randomly or Dynamically
When you write records to an indexed data set and ACCESS IS RANDOM or ACCESS IS DYNAMIC, the records can be written in any order.

· Replacing Records in a VSAM File

· To replace records in a VSAM file, use REWRITE on a file that you have opened for I-O.

· To replace records randomly or dynamically, the record to be rewritten need not be read by the COBOL program. Instead, to position the record you want to update:

· For indexed files, move the record key to the RECORD KEY data item, and then issue the REWRITE.

· For relative files, move the relative record number to the RELATIVE KEY data item, and then issue the REWRITE.

COBOL Coding for VSAM Files
 Input/Output Statements for VSAM Files
· Deleting Records from a VSAM File
· Open the file I-O and use the DELETE statement to remove an existing record from an indexed or relative file. You cannot use DELETE on a sequential file.

· When ACCESS IS SEQUENTIAL, or if the file contains spanned records, the record to be deleted must first be read by the COBOL program. The DELETE then removes the record that was read. If the DELETE is not preceded by a successful READ, the deletion is not done and the status key value is set to 92.

· When ACCESS IS RANDOM or ACCESS IS DYNAMIC, the record to be deleted need not be read by the COBOL program. To delete a record, the key of the record to be deleted is moved to the RECORD KEY data item and the DELETE is issued.

· Check the file status key after each DELETE statement.

PROCESSING KSDS W/O AIX
· SELECT

· OPEN
· READ

· WRITE
· START
· READ NEXT
· CURRENT RECORD POINTER (CRP)

· CONCEPTUAL POINTER valid only for Sequential request

· indicates the next record to be accessed by READ or READ NEXT

· Established by OPEN ,READ, READ NEXT or START command

· Unsuccessful OPEN, READ, READ NEXT, START - undefined CRP

· Unaffected by DELETE command
Processing KSDS with AIXs
· SELECT Statement

· ALTERNATE KEY
· WITH DUPLICATE

· OPEN & CLOSE Statements
· All the related AIXs are opened (closed) when BASE Cluster is acted upon

· Building an AIX at Base Cluster Load Time
· Status of both Base & AIX clusters after creation is Unloaded
· After loading records into Base , thru pgm, the status of ONLY base is changed to Loaded. AIXs are still unloaded

· BLDINDEX must be used to build alternate index(s), Only then the status is changed

Processing KSDS with AIXs
· At the time loading of records in base cluster, Parm AIXBLD may be used to change the status at the same time

//LOADSTEP EXEC PGM=A,

// PARM=‘/AIXBLD’

MUST provide SYSPRINT DD

· Key of Reference
· Is the key in the base cluster which is currently beign used to retrieve records

· Could be prime or one of the alternate keys.

· Only one key of reference at a time

· JCL for Alternate Indexs

· DDname for Base cluster is same as in SELECT statement

Processing KSDS with AIXs
· DDname for ALT key PATHs - convention is to suffix n (n = 1 to number of paths)

· If base is EMPMSTR then AIX would

· EMPMSTR1, EMPMSTR2 etc

· Make sure that the sequence of ALTERNATE KEY IS clause has one-to one correspondence with the sequence of DD names for the path

PRINTING DATASETS,
REPRO COMMAND
AND ALTER COMMAND

Generation Data Sets

 A generation data set is one of a collection of successive, historically related, cataloged data sets, known as a generation data group (GDG). Each data set within a generation data group is called a generation data set (GDS) or generation.

· Processing Generation Data Groups
· Absolute Generation and Version Numbers
· An absolute generation and version number is used to identify a specific generation of a generation data group.

· The generation and version numbers are in the form GxxxxVyy, where xxxx is an unsigned 4-digit decimal generation number (0001 through 9999) and yy is an unsigned 2-digit decimal version number (00 through 99)

· Relative Generation Number

 As an alternative to using absolute generation and version numbers when cataloging or referring to a generation, we can use a relative generation number.

 For example, A.B.C(-1). A.B.C(+1), or A.B.C(0).
Generation Data Sets

· DEFINE GENERATIONDATAGROUP
· DEFINE GENERATIONDATAGROUP Parameters

DEFINE GENERATIONDATAGROUP

 (NAME(entryname)

 LIMIT(limit)

 [EMPTY|NOEMPTY]

 [OWNER(ownerid)]

 [SCRATCH|NOSCRATCH]

 [TO(date)|FOR(days)])

 [CATALOG(catname[/password])]
Generation Data Sets

· DEFINE GENERATIONDATAGROUP Example
 //DEFGDG1 JOB ...

 //STEP1 EXEC PGM=IDCAMS

 //GDGMOD DD DSNAME=GDG01,DISP=(,KEEP),

 // SPACE=(TRK,(0)),UNIT=3380,VOL=SER=VSER03,

 // DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD *

 DEFINE GENERATIONDATAGROUP -

 (NAME(GDG01) -

 EMPTY -

 NOSCRATCH -

 LIMIT(255))

 /*

Generation Data Sets

· DEFINE GENERATIONDATAGROUP Example (contd)
 //DEFGDG2 JOB ...

 //STEP1 EXEC PGM=IEFBR14

 //GDGDD1 DD DSNAME=GDG01(+1),DISP=(NEW,CATLG),

 // SPACE=(TRK,(10,5)),VOL=SER=VSER03,

 // UNIT=3380

 //SYSPRINT DD SYSOUT=A

 //SYSIN DD *

 /*
