 JCL

JCL code consists of a series of information statements, which tell the operating system...

... the name of the application programs or procedures to be processed.

... the name and location of the data files needed by the application programs.

... the hardware devices needed to process the job.

JCL control statements are organized into groups of work called JOBS.

A JOB is simply the execution of a program or a set of related programs.

For example, a single JOB might do all of the following:

 ■ Retrieve payroll data from a file

 ■ Sort and format the retrieved data

 ■ Print the data as a payroll report

Could the above job consist of:
 One program?

 Two programs?

 Three programs?

That's right, but the job could consist of one, two or three programs.

The general structure of a job...

 ■ Each program within a job is a jobstep.

 ■ Each jobstep EXECutes one program.

 ■ DD statements in each jobstep tell the operating system more about the program named in the EXEC statement.

DD statements are usually placed after the

EXEC statement in a jobstep. (T or F?) ►T◄

 Correct. DD statements usually (but not always) follow EXEC statements.

If a programmer needed five programs to complete a job, the JCL code could include five EXEC statements. (T or F?) ►T◄

 That's right. The JCL code could use 5 EXEC statements to execute 5 programs in 5 jobsteps.

Because JCL works so closely with the resident operating system, it is important to understand the relationship between them.

 JCL defines the job, but JCL depends on the operating system to perform various functions, including: JOB SCHEDULING , JOB MANAGEMENT and DATA MANAGEMENT

JOB SCHEDULING

The operating system provides facilities which enable the console operator to schedule jobs for optimum processing time.

■ One job must be held back if a required resource is not available...

■ ...and another job must be scheduled to match resources which are available.

■ The importance of each job must also be taken into account.

JCL can indicate the priority and the resources needed so that the job execution can be scheduled.

Mark the following (T)rue or (F)alse.

►F◄ The JCL programmer is responsible for making sure that a non-shareable device (e.g. printer) is not double-booked.

►T◄ The console operator can schedule jobs based on resource allocation.

►T◄ When defining a job, the JCL programmer must include all the resources which will be needed.

JOB MANAGEMANT

1. Jobs are read into the input stream INPUT STREAM

2. Jobs are scheduled. INPUT QUEUE.

3. Jobs are processed Central Processing Unit

4. Job output is scheduled and completed. OUTPUT QUEUE

Before a job is submitted for processing, and after the processing is finished, the operating system does not

know of the existence of the job except as a file.

 DATA MANAGEMENT

 The following (T)rue/(F)alse exercise will help to explain some of the data management terms.

 DATASET ►T◄ Is any group of logically related records Correct. JCL refers to logically related records as datasets. Let's examine what this means...

 ►T◄ Can be an application program or a data file.

 ►T◄ Can be a library of datasets. Correct. JCL code often specifies the name of the dataset or library in which a particular program or procedure can be found. A library is a particular type of data set (Paritioned Data Set or PDS) which is made up of MEMBERS.

 ►T◄ Needs a unique name.

 CATALOG ►T◄ Is a system file which holds the location of datasets.

 Yes. The catalog is a special file which acts as a dataset directory. Given the name, the operating system can use the catalog to find the dataset.

 ►T◄ The location of a new dataset is automatically stored here.

 This is FALSE. The operating system only stores the dataset location in the catalog if requested to do so. There are uncataloged datasets.

The operating system manages the movement of datasets between active memory and secondary storage devices.

To do this, it needs information about the location and physical characteristics of the dataset.

For the operating system to find an UNCATALOGED dataset or for the operating system to create a NEW dataset, the JCL code can provide the necessary data management information.

JCL still uses batch processing today, why ?

■ It is convenient. Batch processing requires little operator involvement.

■ It is time efficient. The operating system schedules jobs to optimize processing time.

■ It maximizes computer use. Jobs are processed overnight or during times when the computer would otherwise stand idle.

■ It is cost efficient. All the advantages above decrease the cost of mainframe computer use.

 ONLINE PROCESSING BATCH PROCESSING (JCL)

 ■ You can interactively provide ■ You must provide all information

 the system with information to the system before submitting

 while the program is running. the job.

 ■ You get immediate feedback on ■ You must wait (sometimes hours)

 how the program ran so you can for results of a run. If a job

 immediately fix problems and Abnormally ENDS, you cannot

 continue the run. Simply correct and continue.

 ■ Often, interactive feedback ■ It is the responsibility of the

 is supplied when a problem is JCL programmer to write the code

 encountered. which will supply feedback.

MVS – MULTIPLE VIRTUAL STORAGE

MULTIPROGRAMMING CAPABILITY

 ■ Most jobs do not use all the mainframe resources at one time, so a single job does not keep the computer busy.

■ Multiprogramming is the ability to run multiple jobs at one time.

■ Multiprogramming makes efficient use of all mainframe resources. More job processing is completed with less time and less money.

VIRTUAL STORAGE CAPABILITY

■ Only jobsteps currently being processed need to be in main memory. Other jobs could be processed if idle jobsteps were stored until needed.

■ Virtual Storage puts idle segments on disk and swaps them in as needed.

■ Virtual storage allows jobs to be larger than the actual main memory in the computer. Also, main memory is used more efficiently.

► VIRTUAL STORAGE ◄ uses hardware to simulate main storage.

 ► MULTIPROGRAMMING ◄ is the execution of multiple jobs at one time.

2.

By the end of this module you will be able to:

■ Recognize a JCL job.

■ Document a job with Comment Lines.

■ State the function of these JCL statements: ■ JOB ■ EXEC ■ DD

■ Identify and understand the function of the five fields that comprise a JCL statement.

■ Indicate where each JCL statement is coded in a job.

Here is an example of what a typical JCL job looks like:

 //PRBACKUP JOB 99030,'JOYCE KARING'

 //*------------------------------------*

 //* THIS JOB COPIES PAYROLL *

 //* MASTER FROM DISK TO TAPE *

 //*------------------------------------*

 //STEP1 EXEC PGM=IEBGENER

 //STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR

 //SYSIN DD DUMMY

 //SYSPRINT DD SYSOUT=A

 //SYSUT1 DD DSN=PR.MASTER,DISP=OLD

 //SYSUT2 DD DSN=PR.DAILY.BACKUP,

 // DISP=(NEW,CATLG),UNIT=TAPE,

 // DCB=(RECFM=FB,LRECL=200,

 // BLKSIZE=10000)

 //

A job is the execution of one or more jobsteps. As mentioned, a jobstep is the execution of a program or procedure.

The job, PRBACKUP consists of a single jobstep called STEP1.

STEP1 creates a tape back up of the data set PR.MASTER.

The JOB statement is always the first statement in a JOB

The JOB statement is used to:

 ■ Mark the beginning of a job and identify a job with an assigned job name.

 ■ Specify an account number or other accounting information.

 ■ Supplies a programmer name or other options that can influence how a job is processed.

You can recognize a COMMENT line by the characters //* coded at the beginning of the line.

The EXEC statement is the first statement in a jobstep.

EXEC statements are used to execute a program or procedure.

 EXEC statements consist of:

 ■ the JCL identifier //

 ■ an optional name field (in this example, STEP1)

 ■ the operation field EXEC

 ■ a parameter that specifies whether a program or procedure is to be executed.

DD statements tell the operating system where to find or put each data set the jobstep requires.

The last statement in the job is called a NULL statement

The NULL statement is used to mark the end of a job.

A NULL statement is optional but is usually coded to ensure the system recognizes the end of the job.

A job can contain only one NULL statement

A typical JCL statement can be broken down into five areas, known as fields. These fields are:

 //STEP1 EXEC PGM=UCANDU EXECUTES UCANDU

 │ │ │ │ │

 └──┼───────┼─────────┼───────────────┼──────────► IDENTIFIER

 │ │ │ │

 └───────┼─────────┼───────────────┼──────────► NAME

 │ │ │

 └─────────┼───────────────┼──────────► OPERATION

 │ │

 └───────────────┼──────────► PARAMETERS

 │

 └──────────► COMMENTS

The identifier field indicates that a line of code is a JCL statement.

This field is usually coded with two slashes (//) in the first two character positions.

■ The name field consists of from one to eight characters, which can be letters, numbers or national characters (#, @ and $).

■ The first character in a name must be either a letter or a national character.

■ The exception to this are comment lines.

■ The DD statement named SYSUT2 shows a JCL statement, which is continued over several lines.

■ Notice that the name field and operation field (in this case DD) are only required on the first line of the continued statement.

■ This field is coded after the statement name, and must be preceded by at least one space.

■ JOB, EXEC and DD are three of the valid operators defined for this field.

■ Seven statements in this job contain an operation field.

 Comment lines and null statements do not require an operation field.

■ Remember. If a JCL statement is continued onto another line, the operation field is required only on the first line.

Parameters influence how JCL statements are processed.

Parameters are coded at least one space after the operation field and can extend to column 71.

If a parameter is to include spaces or special characters, the value must be enclosed in single quotes.

This JOB statement is comprised of a jobname, accounting information and a programmer name. Other parameters could be added.

The jobname, PRBACKUP is used by the operating system to refer to the job.

In this example, the accounting information field contains a five digit account number. This information is

often used to bill the person or department responsible for the job.

JOYCE KARING is the name of the programmer who coded, or is responsible for the job.

The programmer name is limited to 20 characters and must be in single quotes if special characters or blanks are used.

Documentation in a comment line can begin in column 4 and extend to column 80.

If a job abnormally terminates, a coded stepname will help you identify the source of errors indicated by system messages.

Here's how the ddname works:

The application program lists all of the data sets it requires.

Data set names in the application program and ddnames in the job must match.

The actual name of the data set is not required by the application program.

The reference is through the ddname only.

 //SYSUT1 DD DSN=PR.MASTER,DISP=OLD

 //SYSUT2 DD DSN=PR.DAILY.BACKUP,

 // DISP=(NEW,CATLG),UNIT=TAPE,

 // DCB=(RECFM=FB,LRECL=200,

 // BLKSIZE=10000)

 //

STEPLIB is a special reserved ddname. It is used to specify the library (partitioned data set) which contains the program for a step.

In this example, the parameter DSN=SYS1.LINKLIB indicates that IEBGENER is located in a library called SYS1.LINKLIB.

 DISP=SHR indicates that other jobs can share the library at the same time.

The SYSIN DD statement indicates that a data set is to be read.

In this example, the SYSIN DD statement is coded with the DUMMY parameter. The DUMMY

parameter indicates that NO data set will be made available to the step.

When the IEBGENER program is run, it sends messages about its execution to a dataset with the ddname SYSPRINT.

//SYSPRINT DD SYSOUT=A is used to indicate where to send the messages.

This DD statement directs messages from IEBGENER to any printer designated as Class A.

To create a back-up, IEBGENER requires information about the original data set and the back-up to be created.

This information is provided in two DD statements.

The DD statement, assigned the name SYSUT1, describes the input data set.

 1. Provides the data set with a data set name.

2. Indicates the data set is already created and requests the system to catalog the data set.

3. This parameter specifies the name of the storage device.

4. Specifies the physical characteristics of a data set.

3 ► ◄ UNIT=TAPE

1 ► ◄ DSN=FEB.SALES

2 ► ◄ DISP=(OLD,CATLG)

4 ► ◄ DCB=(RECFM=FB,LRECL=200, BLKSIZE=10000)

3. Handling Data files

By the end of this module you will be able to:

■ Indicate the function of the two Storage Devices, and state their advantages and disadvantages.

■ State how records are blocked, and understand how blocking is used to conserve space on storage devices.

■ Define the purpose of in-stream data in a jobstep.

■ Code and indicate the function of the following JCL parameters: ■ DSN ■ DCB ■ SPACE

 ■ UNIT ■ VOLUME

The most important uses of magnetic tape in computer systems are:

 ■ To back up data contained on direct access storage devices.

 ■ To interchange data between separate computer systems.

The amount of data that can be recorded on a tape depends on:

 ■ the length of the tape

 ■ the density of the tape

 ■ whether records are blocked

Density is a measure of the number of bytes of data that can be recorded on one inch of tape. Tape densities for standard tapes are usually 1600 or 6250 bytes per inch.

A technique called blocking permits more records to be placed onto a storage device, by eliminating gaps between records.

Between the records on a tape are spaces where no data is recorded

These spaces, called inter-record gaps or IRGs, are shown below.

┌─────┬────────┬─────┬────────┬─────┬────────┬─────┬────────┬─────┐

│ │ │ │ │ │ │ │ │ │

│ GAP │ RECORD │ GAP │ RECORD │ GAP │ RECORD │ GAP │ RECORD │ GAP │

│ │ │ │ │ │ │ │ │ │

└─────┴────────┴─────┴────────┴─────┴────────┴─────┴────────┴─────┘

When a technique called blocking is used, more than one record is

stored between IRGs, reducing the amount of wasted space on the tape

A group of records stored together is called a block. The example

below shows a segment of tape which contains a four record block.

 ┌─────┬────────┬────────┬────────┬────────┬─────┐

 │ │ │ │ │ │ │

 │ GAP │ RECORD │ RECORD │ RECORD │ RECORD │ GAP │

 │ │ │ │ │ │ │

 └─────┴────────┴────────┴────────┴────────┴─────┘

3 ►◄ IRGs 1. A group of records that are stored in adjacent positions on a storage

1 ►◄ BLOCK device.

2 ►◄ BLOCKING 2. Eliminating inter-record gaps between records to conserve space.

 3. Spaces which separate each record contained on a magnetic tape.

Another form of data storage is the Direct Access Storage Device.

Direct access storage devices, or DASD's can access any record in a data set very quickly without reading each preceding record.

A variety of DASD types exist, but we will only be discussing Disk Drives, because they are the most commonly used.

 A disk drive is a hardware unit that reads and writes data on a storage device called a Disk Pack.

A disk pack consists of a central spindle with a stack of metal disks that spin at a constant speed.

Data is recorded on each disk surface in concentric circles called TRACKS. Although tracks get smaller towards the center of a disk, each track is capable of containing the same amount of data.

The recording surfaces of a disk pack are read or written to by an access mechanism, or actuator similar to the one shown below.

An actuator has a Read/Write head for each disk recording surface.

To operate on a recording surface, the actuator moves to the track to be operated on.

When the actuator moves, all the heads move in unison so they are positioned on the same

track on each disk surface.The same track on each disk surface is collectively referred to as a cylinder.

Like other storage devices, disk drives have benefits and drawbacks.

The benefits include:

■ The capability to store large amounts of data.

■ Quick data access, because records are addressable and do not require each preceding record to be read.

The Drawbacks include:

Disk drives are very costly in comparison to other storage devices, such as magnetic tape.

Records on disk drives are not easily shared among different computer installations.

You can supply a program with input data, by either retrieving a data set from a storage device, or by coding instream data directly in a jobstep.

Let's now take a look at the example job from Module 2, before it was modified with in-stream data.

This job creates a duplicate back up of the original data set.

DUMMY means no editing instructions are given to the program IEBGENER.

The IEBGENER program reads instructions from the SYSIN data set.

Since no instructions were supplied, the program copies SYSUT1 to SYSUT2. This is the default.

Let's now see how our example job has changed.

//PRBACKUP JOB 00001,PAYROLL

//*------------------------------------*

//* THIS JOB COPIES PAYROLL *

//* MASTER FROM DISK TO TAPE *

//*------------------------------------*

//STEP1 EXEC PGM=IEBGENER

//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=PR.MASTER,DISP=OLD

//SYSUT2 DD DSN=PR.DAILY.BACKUP,

// DISP=(NEW,CATLG),UNIT=TAPE,

// DCB=(RECFM=FB,LRECL=206,

// BLKSIZE=10300)

//SYSIN DD *

 GENERATE MAXFLDS=2,MAXLITS=6

 RECORD FIELD=(6,'901106',,1),FIELD=(200,1,,7)

/*

 The DUMMY parameter in this DD statement is replaced by an "*" to indicate that in-stream data is coded after the DD statement.

The in-stream data in this DD statement contains commands that modify the back-up, by adding a six digit date field to each record.

As a result of the modification, the LRECL and BLKSIZE parameters in the output DD statement have

been changed to accommodate the increase in record length.

DD Parameters

DSNAME

DCB

UNIT

VOLUME

SPACE

The DSNAME (DSN) parameter specifies the name of a data set.

 A data set name can be coded as either:

 DSNAME=data-set-name or DSN=data-set-name

 DSN can be used to assign a name for a newly created data set, or specify to the system the name of an existing data set.

The Data Control Block (DCB) parameter describes the physical characteristics of a data set.

A DCB parameter must be coded for all newly created data sets.

The DCB parameter is not required for existing data sets, because the operating system retains the DCB information when the data set is created.

 A DCB parameter is coded either:

 DCB=subparameter or DCB=(subparameter,...,subparameter)

Certain DCB subparameters are required for almost every data set, while others are optional.

In this module we discuss three subparameters usually required for newly created data sets:

 ■ RECFM - Record Format

 ■ LRECL - Logical Record Length

 ■ BLKSIZE - Block Size

RECFM=FB specifies that records are Fixed length and Blocked.

 ┌───────────┬───────────┬───────────┬────────┐

 Inter-record │ RECORD 1 │ RECORD 2 │ RECORD 3 │ RECORD 4 │ Inter-record

 gap (IRG) │ │ │ │ │ gap (IRG)

 │ 300 BYTES 300 BYTES │ 300 BYTES 300 BYTES │

 └───────────┴───────────┴───────────┴─────────

RECFM=F specifies that records are Fixed length and Unblocked.

 ┌───────────┐ ┌───────────┐ ┌───────────┐

Inter-record │ RECORD 1 │ │ RECORD 2 │ │ RECORD 3 │ Inter-record

gap (IRG) │ │ IRG│ │ IRG │ │ gap (IRG)

 │ 300 BYTES │ │ 300 BYTES │ │ 300 BYTES │

 └───────────┘ └───────────┘ └───────────┘

RECFM=VB specifies that records are Variable length and Blocked.

RECFM=V specifies that records are Variable length and Unblocked.

RECFM=VBS specifies that records are Variable length and Block Spanned.

 If a record is too large to fit in the end of a block it will split and the second part will placed at the beginning of the next block.

LRECL is used to specify the maximum length of fixed or variable length records in a data set.

 LRECL is coded: LRECL=bytes

The LRECL is determined differently for fixed and variable length records.

■ For fixed length records (whether blocked or unblocked) the LRECL is the length of a record. This is because all records are the same length.

■ For variable length records (whether blocked or unblocked) the LRECL is the length of the longest record plus 4 bytes. That is, if the longest record was 96 bytes, you would specify LRECL=100.

Variable length records require an additional 4 bytes, because the length of each record is specified in a 4 byte control field.

Note: If you do not add the 4 bytes for the control field then you could lose data by truncation or your

job might abend.

BLKSIZE is used to specify the size of a block of records in a data set.

 BLKSIZE is coded: BLKSIZE=bytes

The largest block size you can specify with the BLKSIZE parameter is 32760 bytes.

For Fixed Blocked records the BLKSIZE must be an even multiple of the LRECL.

For example: DCB=(RECFM=FB,LRECL=240,BLKSIZE=960)

Specifying the BLKSIZE for variable length records is slightly more complicated than specifying the BLKSIZE for fixed length records.

For variable blocked records, the BLKSIZE must be at least 8 bytes greater than the longest record in the data set.

This is because the length of each block is specified in a 4 byte block length control field.

If the longest record in the data set is 120 bytes, then the LRECL is 124 and the minimum BLKSIZE is 128.

It is usually preferable to define larger blocks so the storage devices can work more efficiently.

If the blocks are large then the device is not wasting valuable time marking many inter-block gaps.

 To decide on a BLKSIZE for variable blocked records, you need to find a balance between the storage device's preferred block size for fast transfer times and the ability of the program/computer to store large amounts of data in memory.

Often, a programmer will just specify 32K, the maximum block size, and let the system take care of the rest. eg. DCB=(RECFM=VB,LRECL=124,BLKSIZE=32760)

 OR

 For ease of multiplication, some programmers will just specify 10 LRECLs per block, plus 4 bytes for the control field.

 eg. DCB=(RECFM=VB,LRECL=124,BLKSIZE=1244)

The BLKSIZE for variable blocked records doesn't have to be a multiple of LRECL.

BLKSIZE usually exceeds the minimum (8 bytes greater than the longest record).

Let's now take a look at a DD parameter used to specify a storage device.

If you are creating an output data set, you must indicate to the operating system where the data set will be stored.

If you are accessing an existing data set that has not been cataloged, you must specify where the data set resides.

In JCL, the UNIT parameter is used to designate a storage device for a data set.

The UNIT parameter can be coded in one of the following three ways:

 ■ UNIT=device-address

 ■ UNIT=device-type

 ■ UNIT=group-name

 UNIT=device-address requests a storage device by specifing a three digit address, assigned to the

 device at the time of installation.

 For example, if you wanted to request a device with the address 333, you would code: UNIT=333.

UNIT=device-type requests a device by its generic name. This name is usually numeric and identifies the storage device by its model number and machine type.

For example, if you wanted to request an available 3380 disk drive, you would code: UNIT=3380.

Unit=group-name requests a device from a group of devices, by specifying an alphanumeric group name assigned by the installation.

For example, if you wanted the system to select any available tape storage device from the group TAPE, you would code: UNIT=TAPE.

Volume is another DD parameter used to specify the location of a data set.

The VOLUME parameter is coded with a serial number that identifies the volume (e.g., tape reel or disk pack) for the data set used, or where an output data set will reside.

 The VOLUME parameter can be coded either:

 ■ VOL=SER=serial-number

 ■ VOLUME=SER=serial-number

 There are two methods of requesting a volume for a data set:

■ Specific Volume Request

■ Nonspecific Volume Request

 When you make a specific request, you must code the volume parameter to indicate which volume contains the data set.

 For a new data set a nonspecific volume request may be used. When you make a nonspecific request the VOLUME parameter is optional; if you omit it, the operating system selects a volume for you.

The SPACE parameter is used to request an area of storage for a newly created data set, on a Direct Access Storage Device.

SPACE=(CYL, primary)

 SPACE=(TRK, primary)

 SPACE=(blocksize, primary)

 When you use blocks to request space for a data set, the system calculates the number of tracks or cylinders needed to store the data set.

Space can be requested in cylinders (CYL), tracks (TRK), or blocks.

Primary allocation specifies the number of units (cylinder, tracks, or blocks) that you wish to allocate to a data set.Primary allocation should be the amount of space you think the data set will require.

To ensure that there is enough space reserved for a data set, you can use the secondary allocation subparameter. This numeric value specifies the number of cylinders, tracks or blocks to allocate to a data set, if primary allocation is exceeded.

 ┌─

 Secondary allocation │ SPACE=(CYL,(primary,secondary))

 is coded: ────────────┤ SPACE=(TRK,(primary,secondary))

 │ SPACE=(blocksize,(primary,secondary))

 If the data set requires more space than the primary allocation, the space specified in secondary allocation is reserved. If this is still not enough space, the secondary allocation is repeated (up to 15 times).

 For example...

 Primary 1 Secondary 2 Secondary 15 Secondary

 ┌─────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐

 SPACE=(TRK,(10,2)) = │10 tracks│ │ 2 tracks │ │ 2 tracks │....│ 2 tracks │

 └─────────┘ └──────────┘ └──────────┘ └──────────┘

4.Multiple step jobs

By the end of this module you will be able to:

■ Recognize the beginning and end of each jobstep in a job.

■ Code a DD statement for a temporary data set.

■ Determine the disposition of a data set.

■ Understand condition codes.

■ Understand the effect of abnormal termination on subsequent jobsteps.

//PRUPDATE JOB 00001,PAYROLL

 //*--

 //* THIS JOB UPDATES THE PAYROLL MASTER FILE ▀

 //*--

 //STEP1 EXEC PGM=PR0001

 //STEPLIB DD DSN=PR.LINKLIB,DISP=SHR

 //TRANSACT DD DSN=PR.TRANSACT,DISP=OLD

 //MASTER DD DSN=PR.MASTER,DISP=OLD

 //ERRORS DD DSN=&&ERRORS,

 // DISP=(NEW,PASS),UNIT=SYSTEMP,

 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

 //*---

 //STEP2 EXEC PGM=IEBGENER,COND=(0,NE)

 //STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR

 //SYSIN DD DUMMY

 //SYSPRINT DD SYSOUT=A

 //SYSUT1 DD DSN=&&ERRORS,DISP=(OLD,DELETE)

 //SYSUT2 DD SYSOUT=A

 //

The EXEC statement is always the first statement in a jobstep and it always calls an application program or

a procedure.

At the same time, it signals the end of the previous jobstep.

Jobsteps, if executed, are executed in sequential order.

Each EXEC statement can contain additional information which is specific to that jobstep.

 //*

 //STEP1 EXEC PGM=CUSTATUS,COND=(4,LT),TIME=(3,15)

 //|

 //|

In Multi-step jobs, an individual data set is often used in several of the steps. When this occurs, the order of step execution is important. For example, a jobstep which updates a data set should be placed before the jobstep which prints the revised data set. (&&ERRORS)

Both single and multiple step jobs often require data sets which are only needed while the job is running. These data sets do not exist before the job begins and they will not exist after the job has terminated.

These are called Temporary Data Sets, and have some special coding rules...

Temporary data sets are used only within the job where they are created.

The data set is created in the step where it is first needed. It can then be passed to subsequent steps and it is later deleted at the end of the job run.

A temporary data set can be used for whatever purpose and as often as the programmer desires. Some typical uses are:

 ■ temporary workspace for SORT

 ■ data set of messages

It is good programming practice to code a DSN parameter but it may be omitted.

If omitted, the system assumes it is temporary and generates its own temporary data set name.

The name will begin with SYS and will include such items as the Julian date, the time, the jobname as

well as other identifying characteristics.

The first subparameter of the DISPosition parameter indicates whether the data set is being created or is coming from a previous step. The second subparameter indicates what will be done with the data set when

the step terminates. The format is:

 DISP=(status,normal disposition)

 The allowable codes for status are: NEW, OLD, SHR and MOD (this Module will discuss the first two.)

 The allowable codes for normal disposition are: KEEP, DELETE, PASS, CATLG, and UNCATLG (this Module will discuss the first three.)

The first subparameter of the DISPosition parameter indicates whether the data set is being created or is coming from a previous step. The second subparameter indicates what will be done with the data set when

the step terminates. The format is:

 DISP=(status,normal disposition)

In the first step, the data set is being created, hence, the DISPosition is NEW. The second

step will also use this data set so it must be PASSed.

In the second step, the data set has already been created, hence, it is OLD. After the second step has finished execution, the data set is DELETEd.

Temporary data sets are automatically DELETEd when the JOB terminates.

Compilers and application programs may be designed to set a numeric value indicating the result of

 a program's execution.

In application programs, setting this condition code and defining its meaning is the programmer's

 responsibility.

The numeric value starts at 0 and customarily increases in multiples of 4. Zero may indicate no errors, 4 minor errors and so on.

 In JCL the COND parameter is used to test the condition code set by the program. The result of the test will determine what happens next.

When the result of the test is TRUE, the step is BYPASSED.

When the result of the test is FALSE, the step is EXECUTED.

Recall the COND parameter in our JOB:

 //STEP2 EXEC PGM=IEBGENER,COND=(0,NE)

The format of the COND parameter is:

 COND=(number,comparison)

The types of comparison that

can be made are:

GT - Greater Than

GE - Greater Than or Equal To

EQ - Equal To

NE - Not Equal To

LT - Less Than

LE - Less Than or Equal To

When an EXEC statement COND parameter tests the condition code, it is testing the code that was

set at the end of ALL previous steps.

The COND parameter must be read from left to right.

For example, read COND=(4,LT) If 4 is less than the condition code...

It would be incorrect to say: If the condition code is less than 4...

Let's see how the wording is changed to place the number before the comparison.

BYPASS this step if the If 16 is EQUAL to the

condition code of any ─────► COND=(16,EQ) ◄───── condition code of ALL

previous step is equal to previous steps, bypass

16. this step.

In this case, saying: condition code = 16...

is the same as: 16 = condition code ...

EXECUTE this step if the If 16 is NOT EQUAL to

condition code on any ─────► COND=(16,NE) ◄───── the condition code of

previous step is equal to all previous steps,

16. bypass this step.

 In this case, saying: condition code = 16 execute

 is the same as: condition code NE 16 bypass

 or: 16 NE condition code bypass

If the condition code is If 8 is LESS THAN or

greater than or equal to ─────► COND=(8,LE) ◄───── EQUAL to the condition

8, BYPASS this step. codes of ALL previous

 steps, bypass this step.

 In this case, saying: condition code ≥ 8bypass

 is the same as: 8 ≤ condition code..bypass

If the condition code is If 8 is GREATER THAN

greater than or equal to ─────► COND=(8,GT) ◄───── the condition code of ALL

8, EXECUTE this step. previous steps, bypass

 this step.

 In this case, saying: condition code ≥ 8 execute

 is the same as: condition code < 8 bypass

 or: 8 > condition code ... bypass

The condition codes of all If 12 is LESS THAN the

previous steps must be less─────► COND=(12,LT) ◄───── condition code of ALL

than or equal to 12 so that previous steps, bypass

this step can be EXECUTED. this step.

 In this case, saying: condition code ≤ 12 execute

 is the same as: condition code > 12 bypass

 or: 12 < condition code ... bypass

So far, the COND parameter has dealt with the normal termination of jobsteps. That is, the programmer chooses to either continue or prevent step execution based on certain conditions being encountered.

A program can also terminate because the operating system has determined that an error has occurred. This is called an ABEND (ABnormal END). You can, however, choose to execute a step or steps under ABEND circumstances.

 ── EVEN if a previous step ABENDS

 /

 A step can be executed

 \

 ── ONLY if a previous step ABENDS

 The format of the statement becomes : COND=EVEN or COND=ONLY

When a JOB ABENDS, the system scans the remaining steps to see if either of these parameters has been coded. All steps with the EVEN/ONLY parameter are executed. All others are bypassed.

Here are some basic rules that apply to the COND parameter.

■ The COND parameter in the EXEC statement tests the condition codes of the preceding steps.

■ When an EXEC COND parameter tests true that step is bypassed and execution of the next step is attempted.

■ To omit the COND parameter means no tests will be performed, so the system will attempt to execute every step.

■ When a step ABENDS, all subsequent steps are bypassed with the exception of EVEN/ONLY parameters.

//STEP1 EXEC

 |

 //STEP2 EXEC ...,COND=(4,GT)

 |

 //STEP3 EXEC ...,COND=(8,EQ)

 |

 //STEP4 EXEC ...,COND=ONLY

 |

 //STEP5 EXEC ...,COND=(0,NE)

Keep in mind that the EXEC COND parameter tests the condition codes of ALL previous steps.

Before STEP2 begins execution, the condition code of STEP1 is tested. If 4 is greater than

the condition code of STEP1, then STEP2 is bypassed.

At STEP3, the condition codes of both STEP1 and STEP2 are tested. If either are equal to

8, the step is bypassed.

STEP4 will be executed ONLY if an ABEND occurs.

Recall that the DISPosition parameter has two subparameters.

 The first is the status at the beginning of the step and the second is the status at the end of the step.

 DISP=(status,normal disposition)

 │ │

 The default status of ◄─┘ ├──► The default normal disposition

 a data set is NEW. │ of a NEW data set is DELETE.

 │

 └──► The default normal disposition

 of an OLD data set is KEEP.

 When the normal DISPosition is coded as KEEP, changes made to a data set will be available to further steps. When it is coded as DELETE, the data set will not be available to further steps.

A third subparameter can be coded on the DISPosition parameter. It instructs the the system on what to do with the data set when the job and/or step ABENDS.

The format of the parameter is now: DISP=(status,normal disposition,ABEND disposition)

The four allowable codes for an ABEND DISPosition are:

KEEP, DELETE, CATLG, and UNCATLG.

For now, we will use KEEP and DELETE to explain what happens to the data set.

By coding the third subparameter, you are explicitly telling the system what to do with the data set if the JOB ABENDS.

If you omit this subparameter and the job ABENDS, the disposition of the data set will be as is specified under the normal disposition subparameter. (Except for PASSed data sets.)

Therefore, DISP=(OLD,KEEP,KEEP) is the same as DISP=(OLD,KEEP).

5.PROCEDURES

■ Recognize a procedure and understand its function.

■ Invoke a procedure in a JCL job.

■ Alter a procedure by coding symbolic parameters.

■ Override parameters on DD and EXEC statements.

■ Add DD statements to a procedure.

■ Indicate which statements cannot be coded in a procedure.

■ State the difference between In-stream and Cataloged

 procedures.

There are two types of procedures that can be executed in a JCL job:

CATALOGED PROCEDURES

IN-STREAM PROCEDURES

Cataloged procedures are stored in a separate area called a library.

Cataloged procedures are merged in to a when called by an EXEC statement.

In-stream procedures are coded directly in a job input stream.

Before learning how to code and invoke a JCL procedure, it may be helpful to understand why procedures are an important JCL coding technique.

■ Procedures provide a standard =====> Many users can access the same

 method of performing tasks. procedure.

■ Procedures reduce the number =====> One JCL EXEC statement will invoke

 of JCL statements coded. a procedure with many statements.

■ Procedures decrease the =====> Once coded and tested, it is not

 chance of syntax errors. recoded each time it is used.

■ Procedures provide =====> A procedure can be altered to suit

 flexibility. the needs of individual jobs.

■ Procedures provide an easy =====> A job can invoke the same

 method of duplicating JCL procedure more than one time.

 statements in a job.

Let's now create a PROCEDURE that will backup the data set, JUNE.SALES.

The format of the PROC statement is:

 ┌──┐┌─────────┐┌────┐

 │//││proc-name││PROC│

 └┬─┘└────┬────┘└─┬──┘

 └───────┼───────┼───────► ■ // must be in columns 1 and 2 if the

 │ │ PROC statement is coded.

 │ │

 └───────┼───────► ■ The name field in the PROC statement:

 │

 │ - is optional

 │ - begins in column 3

 │ - has 1-8 alphanumeric characters

 │ - must be unique

 │

 └───────► ■ The PROC operation field is separated

 from any other field by blanks.

A procedure cannot contain a JOB statement.

A procedure cannot execute another procedure.

A procedure cannot contain Null (//), or delimiter (/*) statements.

A procedure must contain an EXEC statement.

Now that you are familiar with the construction of the procedure, let's see how a procedure is invoked in a job.

 A PROCEDURE can be called by coding either:

 ┌───────────────────────────────────────┐

 │ //stepname EXEC procedure-name │

 └───────────────────────────────────────┘

 ┌───────────────────────────────────────┐

 │ //stepname EXEC PROC=procedure-name │

 └───────────────────────────────────────┘

These statements say the same thing. They ask the system to find the named PROCEDURE in the procedure library and merge it for execution.

This one step job EXECutes a ┌────┤ PROCEDURE LIBRARY ├────

 procedure called BACKUP. │ │ //STEP1 EXEC PGM=PR0010 │

 │ │ //INPUT DD DSN=DS18764,│

 //BACKUP JOB 00001,PAYROLL │ │ DISP=OLD │

 //*--------------------------------* │ │ //PRINT DD SYSOUT=A │

 //* EXECUTES THE PROCEDURE BACKUP * │ │ : │▀▀▀▀▀▀▀▀▀▀▀▀▀▀

 //*--------------------------------* │ │▄▄▄▄▄▄▄▄▄▄▄▄│ //PRINT PROC

 //PROC1 EXEC PROC=BACKUP──────┐

 │ │ │ //STEP1 EXEC PGM=PR0010 │

 │ │ │ //INPUT DD DSN=DS18764,│

 └ ──────►│ │ DISP=OLD │

 │ │ //OUTPUT DD DSN=... │

 When this job runs, a copy of the │ │ │▄▄▄▄▄▄▄▄▄▄▄▄│ //BACKUP PROC

 procedure is merged into the job. │ └──────────────

The JCL job code and the procedure are combined into one job!

A procedure would be more useful if you could change parameters each time the procedure is invoked.

JCL provides a means of modifying the code contained in procedures to meet the needs of different jobs.

 You can modify a procedure to suit your needs by coding...

 ┌─────────────────────────┐ ┌────────────────────────

 │ ■ SYMBOLIC PARAMETERS │ and/or │ ■ EXEC and DD OVERRIDES

 └─────────────────────────┘ └────────────────────────

 In the following screens you will learn how to alter the contents of a procedure. Here is how it works.

//BACKUP PROC

//STEP1 EXEC PGM=PR74

//INPUT DD DSN=SALESIN,DISP=OLD

//OUTPUT DD DSN=&NAMEOUT,DISP=(NEW,KEEP),

// UNIT=TAPE,VOL=SER=DVYOO1,

// SPACE=(TRK,(10,10)),

// DCB=(BLKSIZE=8000,RECFM=FB,

// LRECL=100).

 . .

 . .

//BACKUP JOB 00001,PAYROLL

//*--------------------------------*

//* EXECUTES THE PROCEDURE BACKUP *

//*--------------------------------*

//PROC1 EXEC PROC=BACKUP,

// NAMEIN=SALESIN,

// NAMEOUT=SALESOUT,

Here is an example with two symbolic parameters coded in a procedure.

At present, they are simply parameters that do not contain a value.

When you want to assign a value to a Symbolic Parameter, simply specify the value in the EXEC

statement of the job that calls the procedure.

The symbolic parameters in the procedure take on the values assigned in the EXEC statement.

&NAMEOUT in the procedure would take on the value of SALESOUT.

Notice that the symbolic parameters in the procedure contain ampersands.

However, an ampersand is not used when the parameter is assigned a value in the job.

The symbolic parameter name is chosen by the JCL programmer and can be anything other than

 an EXEC statement keyword.

Otherwise, the symbolic parameter name is identical in both the procedure and the job.

Value is assigned │ Symbolic parameter is │ Operating System

in a job: │ coded in the procedure: │ Interpretation:

──────────────────────┼───────────────────────────┼────────────────────

TYPE=TEMP │ DSN=&TYPE │ DSN=TEMP

 │ │

USER=SMITH,DEPT=100 │ DSN=&USER&DEPT │ DSN=SMITH100

 │ │

DEPT=D100 │ DSN=SMITH.&DEPT │ DSN=SMITH.D100

 │ │

USER=SMITH │ DSN=&USER.100 │ DSN=SMITH100

What if the symbolic parameter is before the constant?

You can change the default value of a symbolic parameter, by redefining it in the invoking job.

Using symbolic parameters is one way to modify JCL procedures.

Another way is to code DD overrides. Let's use an override to change a DD parameter on this procedure

Suppose that you decided that the new data set must be KEPT. You can override DISP in the

procedure from your job code.

 //JOB1 JOB

 //S1 EXEC PROC1

 //DD1 █DD █DISP=(NEW,KEEP)█

 //PROC1 PROC

 //STEP1 EXEC PGM=P17831

 //DD1 DD DSN=DS318,

 // DISP=(NEW,DELETE)

 //OUT1 DD SYSOUT=A

 ■ First, code the EXEC statement to call the procedure.

 ■ Then tell the system the name of the DD statement to change.

 ■ Next, code the DD operation field.

 ■ Finally, code only the parameters which will be changed. (All others will remain the same.)

To this point, we have been overriding parameters on DD statements. In much the same way, you can also override parameters on the EXEC statement...

//JOB1 JOB //PROC1 PROC

//S1 EXEC PROC=PROC1,C=EVEN //STEP1 EXEC PGM=P163,COND=&C

If the procedure's EXEC parameters are not coded as symbolic parameters, they can be changed by recoding the parameter on the EXEC statement of the job.

//JOB1 JOB //PROC1 PROC

//S1 EXEC,COND=EVEN //STEP1 EXEC PGM=P163,COND=(0,NE)

The discussion to this point has dealt with adding and changing existing parameters on the EXEC and DD

statements of a procedure.

Let's now discuss the situation where you want to `turn off' a parameter in a procedure.

Symbolic parameters are nullified by coding the symbolic parameter name and then by not assigning a value to that name.

 symbolic-parameter=

Here is an example with a data set with two symbolic parameters and one constant component.

//P1 PROC TYPE=INV,REG=R14,

//S1 EXEC PGM=PD025

//DD1 DD DSN=&TYPE.®.SALES

DSN=INVR14SALES

Default parameters are coded on the PROC statement so the data set is assigned a name.

The ® symbolic parameter can be nullified on the invoking EXEC statement.

REG= becomes DSN=INVSALES

In some instances, it may be necessary to nullify an entire DD statement.

 JCL will not allow you to nullify most parameters so it is the statement that must be nullified.

 To do this, simply identify the DD statement you want nullified and recode it as DUMMY statement.

It is frequently necessary to modify and test programs, and, at the same time, leave the program in the production library intact.

 To do this, a copy of the data set is placed in a Test Library.

 PRODUCTION LIBRARY named PR.LIB

 PGM=PR0010

 TEST LIBRARY named PR.TESTLIB

 PGM=PR0010

//PRUPDATE PROC TYPE=,

//STEP1 EXEC PGM=PR0010

//STEPLIB DD DSN=PR.&TYPE.LIB,...

 A STEPLIB DD tells the system which library holds the program.

The same procedure is used to execute the programs in both libraries.

By using a symbolic parameter, we can change the library name.

 If the parameter is nullified by coding "TYPE=", the library name becomes PR.LIB - production.

If the parameter is coded as TYPE=TEST, the library name becomes PR.TESTLIB - test.

6.

■ Code JCL statements using the proper syntax.

■ Recognize the difference between positional and keyword parameters.

■ Understand how to continue a statement onto the next line.

■ Understand and code commonly used parameters on the JOB statement.

■ Understand and code commonly used parameters on the EXEC statements.

JCL has two types of parameters:

 POSITIONAL

 KEYWORD

■ The meaning of a positional parameter is dependent upon the position in which it is coded. Consequently, they must be coded in order.

■ Subparameters within a positional parameter must be coded in their predetermined order and enclosed in parentheses.

 //UPDATE JOB (DEPT,CODE)

 ↑↑

■ Each positional parameter and subparameter must be separated by a comma.

■ When a positional parameter or subparameter is omitted, a comma is coded to indicate that the parameter is missing.

■ When the last positional parameter(s) are missing, the comma(s) may be omitted.

 KEYWORD PARAMETERS

■ The parameter is identified by a KEYWORD.

■ All KEYWORD parameters must follow any positional parameters that are coded.

■ The KEYWORD is followed by an equals sign (=).

 //UPDATE JOB (DEPT,CODE,NUMBER),CLASS=A,PRTY=100,TIME=(3,50)

 ↑ ↑ ↑ ↑

■ KEYWORD parameters may be coded in any order.

■ The subparameters of a KEYWORD parameter must be coded in order, enclosed in paramtheses and contain no blank spaces.

■ KEYWORD parameters and subparameters are separated by a comma.

JCL has strict rules for continuing parameter coding over several lines.

Cols 12345......... 71.........80

 ↑

 //STEP1 EXEC,COND=value,

 // PARM=value,

 // TIME=value

 ■ End the line before column 71.

 ■ Place a comma immediately after the parameter or subparameter.

 ■ Code // in columns 1 and 2 of the next line.

 ■ Start the next parameter anywhere between columns 4 and 16.

Let's now turn our attention to some of the KEYWORD parameters that are coded on the JOB statement.

CLASS MSGLEVEL COND

PRTY MSGCLASS TIME

 NOTIFY

The operating system uses the CLASSification parameter to schedule your JOB for processing. The format of the parameter is: CLASS=jobclass JOBs are grouped into queues in order to optimize

processing efficiency.

By coding the CLASS parameter, the system will know if your JOB is to be run now or held in order to be run at a later time and/or date.

There are 36 possible CLASS values in the character sets A to Z and 0 to 9.

 Your organization has chosen` the values that you will use as well as the meaning assigned to each of the

 values.

When processing is requested, the operating system places the JOB in the appropriate CLASS queue. All JOBs of the same CLASS are routed to the same queue. With the following JOBs awaiting processing, place each jobname in the appropriate JOB queue.

We've just seen that the operating system places a JOB in a queue, based on the coding of the CLASS parameter. Now, let's consider the PrioriTY of the JOBs within a queue.

This is handled by the PRTY parameter. It also is defined by your organization.

 PRTY=numeric-value

The lowest PRioriTY is 0 and goes up to 13 or 15 depending upon your operating system. The higher

the PRioriTY, the sooner the JOB will be selected

JCL uses the MSGLEVEL parameter to control the hard copy log which lists information about your JOB's execution. MSGLEVEL=(statements,messages)

These numeric values are coded in the first subparameter to produce a listing of:

0 - only the JOB statements

1 - all JCL statements (including procedure statements)

2 - JCL statements submitted in the input stream

.

These numeric values are coded in the second subparameter to produce a list of all allocation and

termination messages:

0 - only if the JOB abnormally terminates

1 - whether or not the JOB abnormally terminates.

When the MSGLEVEL parameter is coded, the system allocates a message data set and then writes

information into it while the JOB is running.

J E S 2 J O B L O G

 17.31.46 JOB 5610 $HASP373 TJM002 STARTED

 17.31.47 JOB 5610 $HASP395 TJM002 ENDED

 ------JES2 JOB STATISTICS------

 02 JAN 90 JOB EXECUTION DATE

 14 CARDS READ

 88 SYSOUT PRINT RECORDS

 |

 |

 1 //TJM002 JOB 0402511

 ***-------------------------

 *** THIS JOB COPIES PAYROLL...

 ***-----------------------------

 2 //STEP1 EXEC PGM=IEBGENER

 |

 |

 IEF236I ALLOC. FOR TJM002 STEP1

 IEF237I 123. ALLOCATED TO STEPLIB

The first portion contains communication messages between the operator and the system.

This is followed by JES2 statistics on resources used by the JOB.

 The JCL you coded to run your JOB is next.

At the beginning of each step the allocation of data sets to devices is written to the message

data set.

At the end of the step the data set DISPosition, the volume ID and the CPU time used are

written to the message data set.

You've just learned how to specify what JOB information you want printed. Now you need to code a MSGCLASS parameter to place the print job in a printout queue.

 MSGCLASS=value

 Like the input queues, there are 36 possible output queues in the character sets A to Z and 0 to 9.

 If you do not code the MSGCLASS parameter, the print job will be routed to the default print queue.

When the COND parameter is coded on the JOB statement, it tests the condition code set at the END of step execution.

This is quite different from the EXEC COND. It tests the condition code of ALL previoussteps before step

execution begins.

When your organization's operating system was initially set up, one of the parameters set with a default value was TIME. TIME=(minutes,seconds)

This parameter specifies the amount of CPU TIME required to execute the job.

If the TIME is exceeded, the job will be interrupted, abnormally terminated and the remaining steps will be bypassed. (Except for the EVEN/ONLY COND parameter.)

The TIME required to execute a job is the sum of the TIME required to execute all steps.

Some jobs may require more CPU TIME than the default setting allows, while others may need much

less TIME. You can use the TIME parameter to override the default.

The final JOB statement parameter

that we will discuss is NOTIFY.

 NOTIFY=userid

(The userid is 1 - 7 alphanumeric characters that identify a time sharing user.)

This parameter tells the system to send a message to a designated user, indicating that the JOB processing has been completed.

The message will indicate whether or not the JOB has completed successfully.

If the user is not logged onto the system, the message will be saved until the next logon.

Although it looks like a KEYWORD parameter, PGM is actually a positional parameter.

PGM must be coded after the EXEC statement to tell the system which program to execute in the job step.

Like the PGM parameter, the PROC parameter is also a positional parameter. Both have a KEYWORD appearance to them so that the system can identify and find the ProGraM/PROCedure to be executed.

 PROC=procedure-name

Either PGM or PROC must be coded immediately following the EXEC statement.

Because it is a positional parameter, the word PROC may be omitted. If this is done, the system will

automatically assume that it is a procedure that is to be executed and not a program.

The procedure must be stored in a procedure library or be declared in the JCL input stream prior to the procedure call.

The same character sets and name length rules apply to the procedure name as to PGM.

The KEYWORD parameter PARM is used to pass information to the program that will be executed.

 PARM=value(s)

 JCL CODE

 //STEP5 EXEC PGM=YRSALS,

 // PARM=(35418,359)

The called program will contain instructions to receive, store and use the data as required.

 APPLICATION PROGRAM

 YRSALS

The program needs the total sales for the day as well as the number of transactions completed. $35,418.00 359

The PARM parameter can have up to 100 characters of data. The manner in which it is coded is completely dependent upon the application program.

 PARM=(X1758,'S1 &4T')

Like other parameters, subparameters are separated by commas and special characters are enclosed in single quotes. The entire parameter is then enclosed in parentheses.

The format and sequence of any values passed to an application program are defined in the coding of that program. When PARM passes the data, it applies only to the step in which it is coded.

To test the condition code of a specific step, name the step.

 COND=(value,comparison,stepname)

 //STEP6 EXEC.......,COND=(12,GT,STEP3)

 If 12 is Greater Than the condition code that was set in STEP3, bypass this step.

 //STEP7 EXEC....,COND=((16,EQ,STEP1),(4,LT,STEP5))

 If 16 is EQual to the condition code of STEP1 or if 4 is Less Than the condition code of STEP5, bypass

 this step.

 To test the condition code of a specific step in a procedure, name the step and the procedure.

 //STEP8 EXEC....,COND=(8,GT,STEP2.PROCM)

If 8 is Greater Than the condition code of STEP2, PROCedure M, bypass this step.

■ Create and access data sets.

■ Identify data sets in private libraries.

■ Concatenate data sets.

■ Create and use in-stream data in a job.

■ Assign a printer class to an output data set.

PHYSICAL SEQUENTIAL data sets have records stored one after another.

Sequential data sets can reside on almost any storage device. In fact, it is the only organization allowed on magnetic tape.

Records cannot be randomly accessed in sequential data sets. Even on a DASD, the records must be processed from the beginning, one at a time.

A PARTITIONED DATA SET or PDS is a library of other data sets. It has:

■ a name of its own

■ a directory which holds the names and addresses of its member data sets.

■ all of the data sets which are members of the PDS.

Each member can be processed as one sequential data set... or the entire library can be used as a single data set.

Partitioned data sets or libraries can also be identified using two standard DD names:

 JOBLIB

 STEPLIB

 The programs called by the EXEC statement must always be stored in libraries.

JOBLIB and STEPLIB tell the operating system what library to use.

 //PRBACKUP JOB 00001,PAYROLL The DD statement

 //JOBLIB DD DSN=USER.LIB, with ddname JOBLIB

 // DISP=SHR, specifies the library.

 //STEP1 EXEC PGM=PRSNL,DISP=SHR

 The system will look there to find programs executed in the job. In this jobstep, the program is stored in a different user library.

 //STEP2 EXEC PGM=BUDGET

 //STEPLIB DD DSN=FINANCE.LIB◄─────────────── The DD statement with ddname STEPLIB specifies the library to be used for this one jobstep.

TO IDENTIFY AN EXISTING LIBRARY USING JOBLIB...

 //PRBACKUP JOB 00001,PAYROLL

 //JOBLIB DD DSN=USER.LIB,DISP=SHR,

 // UNIT=3350,VOLUME=SER=D58PVL

 ■ Place the JOBLIB statement immediately after the JOB statement.

 ■ Use JOBLIB as the ddname.

 ■ Code the DSN and DISP parameters.

 ■ DO NOT code UNIT or VOLUME if the library is cataloged.

 ■ You must specify UNIT and VOLUME if the library is NOT cataloged.

If you want the system to override a JOBLIB library for a single step you code a STEPLIB DD statement.

Use the STEPLIB DD statement to override a JOBLIB DD statement for the duration of a single job step.

 //PRBACKUP JOB 00001,PAYROLL

 //JOBLIB DD DSN=USER1.LIB,DISP=SHR

 //STEP1 EXEC PGM=UPDATE

 //STEP2 EXEC PGM=PAYROLL

//STEPLIB DD DSN=USER2.LIB,DISP=SHR

A STEPLIB DD statement:

 ■ is similar in form and function to JOBLIB.

 ■ is placed after the EXEC statement in a job step.

 ■ is effective only for that job step.

 ■ overrides a JOBLIB (if coded). The library named in the JOBLIB statement is not searched.

The system will look first in the specified user library.

 However, if the data set can not be found there, or, if no user library has been specified, the operating system looks in the system library called SYS1.LINKLIB or in other defaults specified by the installation.

Task Performed: USING

Identification

 of a sequential data set name DSN

 of a partitioned data set member DSN

 of library to be used for job JOBLIB

 of library to be used for jobstep STEPLIB

Description

 of status DISP

 of data attributes DCB

 of device UNIT

 of tape or direct access volume VOLUME

 of direct access space on DASD SPACE

To concatenate data sets you write a normal DD statement for the first data set...and then add a DD statement WITHOUT A DDNAME for each data set to be concatenated.

 There are some rules and restrictions which must be followed when concatenating data sets.

 ■ The system processes records from concatenated data sets in the order in which they were concatenated.

 ■ The concatenated data sets must have similar characteristics. (record format and length)

 ■ All the data sets to be concatenated must reside on the same type of device. (disk or tape)

 ■ It is possible to concatenate sequential files or partitioned data sets. (not to each other)

//PRBACKUP JOB 00001,PAYROLL

 //JOBLIB DD DSN=USER1.LIB,DISP=SHR,

 // DD DSN=USER2.LIB,DISP=SHR

 //STEP1 EXEC PGM=UPDATE

 :/STEP2 EXEC PGM=IEBGENER

 //STEP2 EXEC PGM=IEBGENER

If programs from different libraries are executed, the libraries must be concatenated.

■ Code a JOBLIB DD statement.

■ Immediately follow with DD statements for other libraries.

■ Omit the ddname from subsequent DD statements.

Now the system will search for the programs in

 ■ USER1.LIB

 ■ USER2.LIB

 ■ SYS1.LINKLIB

DD statements can also be used to access in-stream data;(i.e., data which has been written within the job).

Your processing program treats in-stream data as if it were a standard sequential file.

To code a DD statement holding in-stream data:

START───► //ddname DD *

 :

 data

 :

END ───► /*

 ■ When DD * is used, the /* delimiter is not necessary because the next JCL statement will signal the end of the in-stream data.If JCL statements are part of in-stream data:

 //ddname DD DATA◄── START

 :

 data

 :

 /* ◄── END

■ When DD DATA is used, the end of in-stream data must be marked. ANYTHING after DATA is

 in-stream data until a delimiter is reached.

Examples of in-stream data set identification:

//ONE DD * The in-stream data ends with another

: DD statement.

(data)

:

//TWO DD DATA Here the in-stream data set ends with

: the delimiter /*.

(data)

:

/* ◄──────────────────────────────┘

//THREE DD DATA,DLM='@@' The DLM parameter lets you change the

: two character code used as a delimiter

(data) statement.

:

@@ ◄───────────────┘ '@@' now indicates the end of in-stream data.

ANY lines without // or /* in columns 1 and 2 are treated as in-stream data.

If a DD * statement is missing, the system automatically provides a DD * statement with a ddname of SYSIN.

Watch what happens if a line should be a JCL statement, but the identifier is missing.

The system treats the line as in-stream data, and it generates a DD * statement.

:

 //STEP1 EXEC PGM=ONE

 //DD1 DD DSN=ONE.DATA

 //SYSIN DD *
 DD2 DD DSN=TWO.DATA

8.

■ Test in-stream procedures.

■ Test your JCL for syntax errors.

■ Code a DUMMY parameter for testing.

■ Interpret the hard copy JCL log.

■ Identify JCL syntax and allocation errors.

■ Understand how the system handles ABENDS.

■ Recognize SYSUDUMP as a last resort

 debugging tool.

■ The PROC statement defines the beginning of the in-stream procedure.

■ The EXEC statement must be placed after the in-stream procedure it invokes.

■ The PEND statement defines the end of the in-stream procedure.

■ The JOB statement must precede any in-stream procedures.

In-stream procedures, like all JCL procedures, are governed by a number of other important rules:

 ■ Any EXEC statements within the in-stream procedure must invoke a ProGraM, not another PROCedure.

 ■ JOBLIB and JOBCAT DD statements are not allowed within the procedure.

 ■ DD * and DD DATA statements are not allowed.

 ■ The delimiter (/*) and null (//) statements are not allowed.

 ■ SYSIN data is not allowed within the procedure

 In addition, there are two rules which apply only to in-stream procedures:

 ■ A maximum of 15 in-stream procedures can be tested in one job.

 ■ Each in-stream procedure can be invoked numerous times

When the PROC statement is encountered, all of the in-stream

procedure statements are saved temporarily under the procedure

name. The EXEC statements within an in-stream procedure are

not executed.

The statements are not checked for syntax errors at this time.Later, when an EXEC statement calls a procedure, the system first checks to see if it is an in-stream procedure. (If the procedure is not found there, the system then goes and checks the procedure library.)

When the in-stream procedure is found, it is checked for syntax errors. If all statements are syntactically correct, the in-stream procedure is merged into the job and executed.

An in-stream procedure resides in memory as a procedure only for the

duration of the job.

After testing has been completed and you are sure that it is working correctly, the in-stream procedure can become a member of a procedure library. The method for doing this varies between installations.

 This is done by:

· Removing the in-stream procedure from the JCL

· Removing the PEND statement

 Adding it to a procedure library

 (The PROC statement is required for an in-stream procedure but it is optional once the procedure is in a library.)

Once your JCL is coded, you will probably want to check it for syntax errors. This can easily be done by coding the keyword parameter TYPRUN on the JOB statement. The format is:

 TYPRUN=SCAN

The system will check your JCL for syntax errors without executing any statements.

It is important to note that this parameter is only capable of detecting syntax errors. It will not detect logic errors.

TYPRUN=SCAN checks for:

 ■ Invalid characters

 ■ Invalid spelling of KEYWORD parameters and subparameters

 ■ Missing parentheses

 ■ Misplaced positional parameters

 ■ Invalid syntax on procedure statements

 TYPRUN=SCAN does not check for:

 ■ Statements in incorrect order

 ■ Invalid organization-defined subparameter syntax

 ■ Inappropriate parameters

 ■ Incorrect data set, volume, and space allocation

 ■ Missing data sets

 ■ Duplicate data sets

How can we test this job if the data set INFILE doesn't yet exist?

This brings us to another testing technique - the DUMMY parameter.

DUMMY is a positional parameter that allows testing to proceed without having to first create all of the required data sets.

//PRINT JOB

 //STEP1 EXEC PGM=PRINT

 //IN DD DSN=DUMMY

 // DISP=OLD

 //OUT DD SYSOUT=A

 When the application program is ready to be tested with actual data sets, DUMMY is replaced by

 the real data set name.

When the DUMMY parameter is coded, the system does not mount volumesor allocate devices or storage.

A READ statement in the application program becomes an end of file and all WRITE statements are ignored.

The DUMMY parameter can be coded on both input and output data sets. They must, however be

sequential data sets.

Parameters that will be required by the actual data set can be coded at this time. Be sure

that they are all syntactically correct;- an error will occur if they are not.

If the data set that will replace the DUMMY data set is new, the DCB parameter must be coded.

//DD4 DD DUMMY,DISP=(NEW,KEEP),

 DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

Let's take a brief look at the organization of a hard copy listing:

o o┌───┐

o Banner Page o│ ■ displays general information about │

o o│ the user, time,and date. │

 └───┘

o o┌───┐

o Console Log o│ ■ holds all messages which were sent to │

o o│ the console operator about this job. │

 └───┘

o o┌───┐

o Job Statistics o│ ■ displays general information about │

o o│ the job. │

 └───┘

o o┌───┐

o JCL Listing o│ ■ hard copy listing of the job code. │

o o│ │

 └───┘

o Allocation and o┌───┐

o Step Termination o│ ■ displays messages about the success │

o Messages o│ or failure of the job. │

 :

08.57.53 JOB 5610 $HASP373 TEST STARTED │▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

 08.58.18 JOB 5610 $HASP395 TEST ENDED │ The page after the banner

 │ page will contain console

 ------ JES2 JOB STATISTICS -------- │ messages and job statistics.

 │

 05 APR 90 JOB EXECUTION DATE │ The console messages consist

 │ of all communication between

 27 CARDS READ │ the operator and the system.

 293 SYSOUT PRINT RECORDS │

 0 SYSOUT PUNCH RECORDS │ It contains information

 21 SYSOUT SPOOL KBYTES │ about:

 0.42 EXECUTION TIME │ ■ device / volume allocation

 │ ■ job execution

 │ ■ termination times

 │ ■ disposition of data sets

If an ABEND situation was en-countered, messages written to the operator's consolewill also be included.

First of all, notice the numbers at the left of each listing.

Each line is numbered when executed.

Next, notice symbols beside each line of code.

The first symbols indicate that these lines are the JCL code before processing.

The number 2 after the PEND indicates the execution of the second statement - EXEC...

The first symbols indicate that these .

lines are the JCL code.before processing.
The number 2 after the PEND indicates the execution of the second statement - EXEC...

The "++" symbol shows that a line was executed as part of an in-stream procedure.

The "***" symbol is used to show that the system interpreted the line as a comment.

The type of messages you can expect to see in the message log are:

 ■ the devices allocated for each jobstep

 ■ the volume(s) used

 ■ the execution and termination of jobsteps

 ■ parameter substitutions

 ■ the data set DISPosition

ABENDS will be indicated in both the console and message logs. In addition, your organization may have a diagnostic software package that will evaluate any ABEND codes, will determine the point where the ABEND occurred, and may also determine the values assigned to any variables when the JOB terminated.

 If these tools are available, the information they produce will follow the message log.

An ABEND can be the result of:

 ■ a program logic error

 ■ execution time exceeding the amount coded on the TIME parameter

 ■ the program is not found in the named library

 ■ a hardware or system failure

Errors in the DD statement are a common JCL logic error.

 ■ If a DD statement is omitted, the operating system is unable to locate a data set required by an application program. In such a case, the JOB will fail.

 ■ If a DD statement is coded twice, the operating system will ignore the first occurrence and assume the second to be the intended statement.

 ■ If two similar DD statements describe the same data set, both will be allocated. The application program will, however, only use the second description.

 Because these kinds of errors are not recognized by the system until after job processing has started, considerable time is wasted.

When an ABEND does occur, the exact cause of the error may be difficult to trace. It may be necessary to determine the contents of the variables in the file buffer.

To do this, code a SYSUDUMP DD or SYSABEND DD statement in each step where a hexadecimal DUMP of the buffer contents could help to determine the cause of the failure.

If //SYSUDUMP DD (or //SYSABEND DD) SYSOUT=A exists in the abending step, the dump of memory will be written to the specified address class.

1
1

