DB2 Concepts

An SQLCA is a set of variables that is updated at the end of the execution of every SQL statement. A program that contains executable SQL statements must provide exactly one SQLCA (unless a stand-alone SQLCODE or SQLSTATE variable is used instead).

 The SQL INCLUDE statement can be used to provide the declaration of the SQLCA

 in all host languages except RPG or REXX.

Defining the SQL Communications Area

 A PL/I program that contains SQL statements must include one or both of the following:

 An SQLCODE variable declared as FIXED BINARY(31)

 An SQLSTATE variable declared as CHAR(5)

 Or,

 An SQLCA (which contains an SQLCODE and SQLSTATE variable).

 The SQLCODE and SQLSTATE values are set by the database manager after each SQL statement is executed. An application can check the SQLCODE or SQLSTATE value to determine whether the last SQL statement was successful.

 The SQLCA can be coded in a PL/I program either directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE statement requests the inclusion of a standard SQLCA declaration:

 EXEC SQL INCLUDE SQLCA;

 The SQLCA must not be defined within an SQL declare section.

 The scope of the SQLCODE, SQLSTATE, and SQLCA variables must include the scope of all SQL statements in the program.

For PL/I

 In PL/I, INCLUDE SQLCA declarations are equivalent (but not necessarily identical) to the following:

--

 DCL 1 SQLCA,

 2 SQLCAID CHAR(8),

 2 SQLCABC BIN FIXED(31),

 2 SQLCODE BIN FIXED(31),

 2 SQLERRM CHAR(70) VAR,

 2 SQLERRP CHAR(8),

 2 SQLERRD(6) BIN FIXED(31),

 2 SQLWARN,

 3 SQLWARN0 CHAR(1),

 3 SQLWARN1 CHAR(1),

 3 SQLWARN2 CHAR(1),

 3 SQLWARN3 CHAR(1),

 3 SQLWARN4 CHAR(1),

 3 SQLWARN5 CHAR(1),

 3 SQLWARN6 CHAR(1),

 3 SQLWARN7 CHAR(1),

 3 SQLWARN8 CHAR(1),

 3 SQLWARN9 CHAR(1),

 3 SQLWARNA CHAR(1),

 2 SQLSTATE CHAR(5);

--

Figure 12. INCLUDE SQLCA Declarations for PL/I

Defining SQL Descriptor Areas

 The following statements require an SQLDA:

 EXECUTE...USING DESCRIPTOR descriptor-name

 FETCH...USING DESCRIPTOR descriptor-name

 OPEN...USING DESCRIPTOR descriptor-name

 DESCRIBE statement-name INTO descriptor-name

 Unlike the SQLCA, there can be more than one SQLDA in a program, and an SQLDA can have any valid name. An SQLDA can be coded in a PL/I program either directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE statement requests the inclusion of a standard SQLDA declaration:

 EXEC SQL INCLUDE SQLDA;

SQL Descriptor Area (SQLDA)

An SQLDA consists of four variables in a header followed by an arbitrary number of occurrences of a sequence of five variables collectively named SQLVAR. In OPEN, FETCH, CALL, and EXECUTE, each occurrence of SQLVAR describes a host variable. In DESCRIBE, each occurrence describes a column of a result table.

Embedding SQL Statements

 The first statement of the PL/I program must be a PROCEDURE statement with OPTIONS(MAIN).

 SQL statements can be coded in a PL/I program wherever executable statements can appear.

 Each SQL statement in a PL/I program must begin with EXEC SQL and end with a semicolon (;).

The key words EXEC SQL must appear all on one line, but the remainder of the statement can appear on the next and subsequent lines.

 Example: An UPDATE statement coded in a PL/I program might be coded as follows:

 EXEC SQL UPDATE DEPARTMENT

 SET MGRNO = :MGR_NUM

 WHERE DEPTNO = :INT_DEPT;

 Comments: In addition to SQL comments (--), PL/I comments can be included in embedded SQL statements wherever

 a blank is allowed, except between the keywords EXEC and SQL.

 Continuation for SQL statements: The line continuation rules for SQL statements are the same as those for other PL/I

 statements, except that EXEC SQL must be specified within one line.

 Including code: SQL statements or PL/I host variable declaration statements may be included by placing the following

 SQL statement at the point in the source code where the statements are to be embedded:

 EXEC SQL INCLUDE text-file-name;

 PL/I %INCLUDE statements cannot be used to include SQL

 statements or host variable declarations that are referenced in

 SQL statements. No PL/I preprocessor directives are permitted

 within SQL statements.

 Margins: SQL statements must be coded in columns 2 through 72.

 Names: Any valid PL/I variable name can be used for a host variable and is subject to the following restrictions:

 Do not use host variable names, external entry names, or access plan names that begin with 'SQL', 'RDI', or 'DSN'.

 These names are reserved for the database manager. For information on the length of a host identifier.

 Statement Labels: All executable SQL statements, like PL/I statements, can have a label prefix.

 WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER statement must be a label in the PL/I

 source code and must be within the scope of any SQL statements affected by the WHENEVER statement.

Using Indicator Variables

 An indicator variable is a two-byte integer (BIN FIXED(15)). On retrieval, an indicator variable

 is used to show whether its associated host variable has been assigned a null value. On

 assignment to a column, a negative indicator variable is used to indicate that a null value

 should be assigned.

 Indicator variables are declared in the same way as host variables and the declarations of the two can be mixed in any way that seems appropriate to the programmer.

 Example: Given the statement:

 EXEC SQL FETCH CLS_CURSOR INTO :CLS_CD,

 :DAY :DAY_IND,

 :BGN :BGN_IND,

 :END :END_IND;

 Variables can be declared as follows:

 EXEC SQL BEGIN DECLARE SECTION;

 DCL CLS_CD CHAR(7);

 DCL DAY BIN FIXED(15);

 DCL BGN CHAR(8);

 DCL END CHAR(8);

 DCL (DAY_IND, BGN_IND, END_IND) BIN FIXED(15);

 EXEC SQL END DECLARE SECTION;

