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{a-24 2 ?
det) 0 b-4 ? |=(@-A)*(b-A)*(c-4) D Ar=abse
0 0 c—A]

Upper triangle is a product of a Diagonal Triangle,
Quiz: Find a basis for N(A) if

1 00 1 00 x=0 0
A=|1 0 1[->]|0 0 1|> z=0 thus, N(A)=|1
0 0 1 0 0 0 y = arbitrary 0

Ax=hx  (Must be # x n matrix _a square matrix)

Non-zero vector X and satisfies the equation = the Eigenvector.
(A-Ax=0
(XeNUA-A)
Describes space: N(A-AI)
Characteristic Polynomial: [A-AI[=0
Algebraic Multiplicity of ) is the multiplicity of A as a Zero of the Characteristic Polynomial.
N(A-AI) has certain dimension.
This dimension (includes zero to large): dim N(A-AI)

Says the same thing {

Page 177 for Definition 27.3.

A(nxn) A1, 55 Ay eigenvalues for each eigenvector N(A- 4; 1)
Ax;=Ahx; and AXx;=kx,

A(xptx) > Ax+ Axy = Axp+hxy =M xp+x3)

Aaxj=aAx; = ahx; = Maxg)

N(A- 4; 1) is a vector space.

P = a basis for N(A- 4; 1)

Py By V..U By (union for all basis) This is the complete set of eigenvectors (are L.I.)

Proof is on page 180 of text. Theorem 27.6
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Look Back at Exercise 26.1 3=3,-2 or 1;=3, 4,=-2

N(A-3D) = Sp{ i } Thus, f; = {m}
2] 2
N(A +2I) = Sp{ _3—} Thus, §, = {[3]}

Complete set of Ei to b2 fi 13 ~-10 S 112 R?
[+ Q CRVECLors = < or A= o ] =
'8 103l 15 —12] = P13

Given: Asquare matrix(nxn)isa 5 x5 matrix where A="7

Then: dim N(A-7I) + rA-7I) =5

sincen=5 andifrank(r)=2 = NA-T)+2=5 = NA-T)=5-20r 5-2=3
Therefore, dim N(A-7I) =3 which means that there are 3 vectors.

Upper Triangular Matrix: A and B are similarif A = PBP~! for some (non-singular) P.
A =PBP' © (AP=PBP'P=PB) > P'4P=-B o plap )’

A is similar to B

det=| A—AI| ifsimilar |PBP™! —AI| (rememberthatI= P*P'and A = PBP!)
So |PBP™'-il| = |(PB-AP)P™'| = | PB-iP || P> |P(B-4) |*| P\ |>

[Pi*| B~ AI'l*| P"Y|= if this is Zero then [A-AI'| =0




