$$\det\begin{bmatrix} a-\lambda & ? & ? \\ 0 & b-\lambda & ? \\ 0 & 0 & c-\lambda \end{bmatrix} = (a-\lambda)*(b-\lambda)*(c-\lambda) \Rightarrow \lambda = \underline{a,b,c}$$

Upper triangle is a product of a Diagonal Triangle.

Quiz: Find a basis for N(A) if

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} x = 0 \\ z = 0 \\ y = arbitrary \end{cases}$$
 thus, $N(A) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Ax= λ x (Must be $n \times n$ matrix _ a square matrix)

Non-zero vector X and satisfies the equation = the Eigenvector.

Says the same thing $\begin{cases} (A - \lambda I)x = 0\\ (X \in N(A - \lambda I)) \end{cases}$

Describes space: N(A-λI)

Characteristic Polynomial: $|A - \lambda I| = 0$

Algebraic Multiplicity of λ is the multiplicity of λ as a Zero of the Characteristic Polynomial.

N(A-λI) has certain dimension.

This dimension (includes zero to large): dim N(A-λI)

Page 177 for Definition 27.3

A(n x n) $\lambda_1, \lambda_2, ..., \lambda_k$ eigenvalues for each eigenvector N(A- λ_i I)

 $A x_1 = \lambda x_1$ and $A x_2 = \lambda x_2$

$$A(x_1+x_2) \Rightarrow Ax_1+Ax_2 \Rightarrow \lambda x_1+\lambda x_2 \Rightarrow \lambda(x_1+x_2)$$

 $A\alpha x_1 = \alpha A x_1 \Rightarrow \alpha \lambda x_1 \Rightarrow \lambda(\alpha x_1)$

 $N(A-\lambda_1 I)$ is a vector space.

 $\beta_1 = a$ basis for $N(A - \lambda_i I)$

 $\beta_1 \cup \beta_2 \cup \cup \beta_k$ (union for all basis) This is the complete set of eigenvectors (are L.I.)

Proof is on page 180 of text. Theorem 27.6

*** A complete set of Eigenvectors is always Linearly Independent.

Section 27 More Lecture Notes on Eigenvectors page: 2 of 2 Date: March 22, 2004

Look Back at Exercise 26.1 $\lambda=3$, -2 or $\lambda_1=3$, $\lambda_2=-2$

$$N(A-3I) = Sp \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} \qquad Thus, \beta_1 = \begin{Bmatrix} 1 \\ 1 \end{Bmatrix}$$

$$N(A + 2I) = Sp \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$$
 Thus, $\beta_2 = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$

Complete set of Eigenvectors = $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ for A= $\begin{bmatrix} 13 & -10 \\ 15 & -12 \end{bmatrix}$ $\therefore Sp \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ = \mathbb{R}^2

Given: A square matrix $(n \times n)$ is a 5×5 matrix where $\lambda = 7$

Then: $\dim N(A-7I) + r(A-7I) = 5$

since n = 5 and if rank (r) = 2 \Rightarrow N(A-7I)+2=5 \Rightarrow N(A-7I) = 5-2 or 5-2=3

Therefore, dim N(A-7I) = 3 which means that there are 3 vectors.

Upper Triangular Matrix: A and B are similar if $A = PBP^{-1}$ for some (non-singular) P.

$$\mathbf{A} = PBP^{-1} \quad \Rightarrow (AP = PBP^{-1}P = PB) \Rightarrow P^{-1}AP = B \quad \Rightarrow \quad P^{-1}A(P^{-1})^{-1}$$

Theorem: Similar Matrices have the same characteristic polynomials.

A is similar to B

 $\det = |A - \lambda I|$ if similar $|PBP^{-1} - \lambda I|$ (remember that $I = P * P^{-1}$ and $A = PBP^{-1}$)

So
$$|PBP^{-1} - \lambda I| \Rightarrow |(PB - \lambda P)P^{-1}| \Rightarrow |PB - \lambda P| * |P^{-1}| \Rightarrow |P(B - \lambda)| * |P^{-1}| \Rightarrow$$

 $|P|^*|B-\lambda I|^*|P^{-1}| \Rightarrow \text{ if this is Zero then } |A-\lambda I| = 0$