
  

CHAPTER 28
 

The Magnetic Field

1* ∙ When a cathode-ray tube is placed horizontally in a magnetic field that is directed vertically upward, the

electrons emitted from the cathode follow one of the dashed paths to the face of the tube in Figure 28-30. The

correct path is ____.  (a) 1  (b) 2  (c) 3  (d) 4  (e) 5

(b)

2 ∙ Why not define B to be in the direction of F, as we do for E?

One cannot define the direction of the force by fiat. By experiment, F is perpendicular to B.

3 ∙ Find the magnetic force on a proton moving with velocity 4.46 Mm/s in the positive x direction in a

magnetic field of 1.75 T in the positive z direction.

Use Equ. 28-1 F = 1.25 pN i××××k = –1.25 pN j

4 ∙ A charge q = – 3.64 nC moves with a velocity of 2.75×106 m/s i. Find the force on the charge if the

magnetic field is (a) B = 0.38 T j, (b) B = 0.75 T i + 0.75 T j, (c) B = 0.65 T i, (d) B = 0.75 T i + 0.75 T k.

(a), (b), (c), (d) Use Equ. 28-1 (a)  F = –3.8 mN i×j = -3.8 mN k  (b) F = –7.5 mN k

(c)  F = 0  (d)  F = 7.5 mN j

5* ∙ A uniform magnetic field of magnitude 1.48 T is in the positive z direction. Find the force exerted by the

field on a proton if the proton’s velocity is (a) v = 2.7 Mm/s i, (b) v = 3.7 Mm/s j, (c) v = 6.8 Mm/s k, and

(d) v = 4.0 Mm/s i + 3.0 Mm/s j.

(a), (b), (c), (d) Use Equ. 28-1 (a)  F = 0.639 pN i×k = –0.639 pN j  (b) F = 0.876 pN i

(c) F = 0  (d) F = 0.71 pN i – 0.947 pN j

6 ∙ An electron moves with a velocity of 2.75 Mm/s in the xy plane at an angle of 60° to the x axis and 30° to

the y axis. A magnetic field of 0.85 T is in the positive y direction. Find the force on the electron.

Use Equ. 28-1 F = –0.44(cos 60o i + cos 30o j)×0.85 j pN = –0.187 pN k

7 ∙ A straight wire segment 2 m long makes an angle of 30° with a uniform magnetic field of 0.37 T. Find the

magnitude of the force on the wire if it carries a current of 2.6 A.

Use Equ. 28-4 F = BI !  sin θ = 0.962 N

8 ∙ A straight wire segment I !  = (2.7 A)(3 cm i + 4 cm j) is in a uniform magnetic field B = 1.3 T i. Find the
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force on the wire.

Use Equ. 28-4 F = –0.140 N k

9* ∙ What is the force (magnitude and direction) on an electron with velocity v = (2i – 3j)×106 m/s in a magnetic

field B = (0.8i + 0.6j – 0.4k) T?

Use Equ. 28-4 F = –0.192 pN i – 0.128 pN j – 0.576 pN k; F = 0.621 pN

10 ∙∙ The wire segment in Figure 28-31 carries a current of 1.8 A from a to b. There is a magnetic field B = 1.2 T

k. Find the total force on the wire and show that it is the same as if the wire were a straight segment from a to

b.

Use Equ. 28-4

If the wire is straight from a to b, ! = 3 cm i + 4 cm j

F = –0.0684 N j + 0.0864 N i;

F = I ! ××××B = 0.0864 N i – 0.0684 N j

11 ∙∙ A straight, stiff, horizontal wire of length 25 cm and mass 50 g is connected to a source of emf by light,

flexible leads. A magnetic field of 1.33 T is horizontal and perpendicular to the wire. Find the current

necessary to float the wire, that is, the current such that the magnetic force balances the weight of the wire.

F = (I ! B – mg) k = 0 I = mg/ ! B = 1.48 A

12 ∙∙ A simple gaussmeter for measuring horizontal magnetic fields consists of a stiff 50-cm wire that hangs

from a conducting pivot so that its free end makes contact with a pool of mercury in a dish below. The mercury

provides an electrical contact without constraining the movement of the wire. The wire has a mass of 5 g and

conducts a current downward. (a) What is the equilibrium angular displacement of the wire from vertical if the

horizontal magnetic field is 0.04 T and the current is 0.20 A? (b) If the current is 20 A and a displacement from

vertical of 0.5 mm can be detected for the free end, what is the horizontal magnetic field sensitivity of this

gaussmeter?

(a) At equilibrium, mg sin θ = I ! B

(b) θ = 0.001 rad = sin θ; solve for B

sin θ = 0.08154; θ = 4.68°
B = 4.91 µT

13* ∙∙ A current-carrying wire is bent into a semicircular loop of radius R that lies in the xy plane. There is a

uniform magnetic field B = Bk perpendicular to the plane of the loop (Figure 28-32). Show that the force acting

on the loop is F = 2IRBj.

With the current in the direction indicated and the magnetic field in the z direction, pointing out of the plane of

the paper, the force is in the radial direction. On an element of length d !  the force is dF = BIR dθ  with x and y 

components dFx = BIR cos θ dθ  and  dFy = BIR sin θ dθ.  By symmetry, the x component of the force is zero.

∫ ==
π

θθ
0

2sin IBRdBIRFy .

14 ∙∙ A 10-cm length of wire carries a current of 4.0 A in the positive z direction. The force on this wire due to a

magnetic field B  is F = (–0.2i + 0.2j) N. If this wire is rotated so that the current flows in the positive x

direction, the force on the wire is F = 0.2k N. Find the magnetic field B.

1. Write the F = (–0.2 i + 0.2 j) N in terms of B

2. Solve for Bx, By, and Bz

(0.4 k)×(Bx i + By j + Bz k) = –0.2 i + 0.2 j

By = 0.5 T, Bx = 0.5 T, Bz is undetermined
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3. Repeat for F = 0.2 k N

4. Write B

(0.4 i)×(Bx i + By j + Bz k) = 0.2 k; Bz = 0

B = (0.5 i + 0.5 j) T

15 ∙∙ A 10-cm length of wire carries a current of 2.0 A in the positive x direction. The force on this wire due to

the presence of a magnetic field B is F = (3.0j + 2.0k) N. If this wire is now rotated so that the current flows in

the positive y direction, the force on the wire is F = (–3.0i – 2.0k) N. Determine the magnetic field B.

1. Write F = (3.0 j + 2.0 k) N in terms of B

2. Solve for the components of B

3. Repeat for F = (–3.0 i – 2.0 k) N

4. Write B

(0.2 i)×(Bx i + By j + Bz k) = 3 j + 2 k

Bx is undetermined; By = 10 T, Bz = –15 T

(0.2 j)×(Bx i + By j + Bz k) = –3.0 i – 2.0 k;

Bx = 10 T, Bz = –15 T

B = (10 i + 10 j – 15 k) T

16 ∙∙∙ A wire bent in some arbitrary shape carries a current I in a uniform magnetic field B. Show explicitly that the

total force on the part of the wire from some point a to some point b is F = I ! ×B, where ! is the vector from a to

b.

From Equ. 28-5 we have ∫ ∫ ×==
b

a

b

a

BIddFF ! . But I and B are constant.Thus, B  I   =   F × ! , where ∫=
b

a

d!!

is just the vector from a to b.

17* ∙ True or false: The magnetic force does not accelerate a particle because the force is perpendicular to the

velocity of the particle.

False

18 ∙ A moving charged particle enters a region in which it is suddenly deflected perpendicular to its motion. 

How can you tell if the deflection was caused by a magnetic field or an electric field?

1. Determine if the deflecting force depends on the particle’s speed. If so, it is due to a magnetic field.

2. Examine the path of the particle. If it is circular, the deflection is due to a magnetic field; if it is parabolic, it

is due to an electric field.

19 ∙ A proton moves in a circular orbit of radius 65 cm perpendicular to a uniform magnetic field of magnitude

0.75 T. (a) What is the period for this motion? (b) Find the speed of the proton. (c) Find the kinetic energy of

the proton.

(a) Use Equ. 28-7

(b) v = 2πr/T

(c) K = 1/2mv2

T = (2π×1.67×10–27/1.6×10–19×0.75) s = 87.4 ns

v = 4.67×107 m/s

K = 1.82×10–12 J = 11.4 MeV

20 ∙ An electron of kinetic energy 45 keV moves in a circular orbit perpendicular to a magnetic field of 0.325 T.

(a) Find the radius of the orbit. (b) Find the frequency and period of the motion.

(a) Use Equ. 28-6 and v = 2K/m ; 
qB

2Km
   =   r

(b) Use Equs. 28-7 and 28-8

r = 2.20 mm

T = 0.11 ns; f = 1/T = 9.08 GHz

21* ∙ An electron from the sun with a speed of 1×107 m/s enters the earth's magnetic field high above the equator

where the magnetic field is 4×10–7 T. The electron moves nearly in a circle except for a small drift along the
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direction of the earth's magnetic field that will take it toward the north pole. (a) What is the radius of the

circular motion? (b) What is the radius of the circular motion near the north pole where the magnetic field is

2×10–5 T?

(a), (b) Use Equ. 28-6 (a)  r = 142 m   (b) r = 2.85 m

22 ∙∙ Protons and deuterons (each with charge +e) and alpha particles (with charge +2e) of the same kinetic

energy enter a uniform magnetic field B that is perpendicular to their velocities. Let rp, rd, and rα be the radii of

their circular orbits. Find the ratios rd/rp and rα /rp. Assume that mα = 2md = 4mp.

/qB2Km   =   r  (see Problem 20). With K and B the same for the three particles, r ∝  m1/2/q. Consequently,

rd/rp = 2  and rα/rp = 1.

23 ∙∙ A proton and an alpha particle move in a uniform magnetic field in circles of the same radii. Compare (a)

their velocities, (b) their kinetic energies, and (c) their angular momenta. (See Problem 22.)

(a) From Equ. 28-6, v = qBr/m. With r and B constant, v ∝  q/m. Consequently, vα = vp/2.

(b) K ∝  mv2 = q2/m. Consequently, Kα = Kp.

(c) L = mvr ∝  mv for constant r. Consequently, Lα = 2Lp.

24 ∙∙ A particle of charge q and mass m has momentum p = mv and kinetic energy K = mv
2
1 2

= p2/2m. If the

particle moves in a circular orbit of radius r perpendicular to a uniform magnetic field B, show that (a) p = Bqr

and (b) K = B2q2r2/2m.

(a) The centripetal force is qBv and this must equal mv2/r. So qB = p/r and p = qBr.

(b) K = p2/2m = q2B2r2/2m.

25* ∙∙ A beam of particles with velocity v enters a region of uniform magnetic field B that makes a small angle θ
with v. Show that after a particle moves a distance 2π (m/qB)v cos θ measured along the direction of B, the

velocity of the particle is in the same direction as it was when it entered the field.

The particle’s velocity has a component v1 parallel to B and a component v2 normal to B. v1 = v cos θ and is

constant. v2 = v sin θ ; the magnetic force due to this velocity component is qBv2 and results in a circular motion

perpendicular to B. The period of that circular motion is given by Equ. 28-7. At the end of one period, v2 is the

same as at the start of the period. In that time, the particle has moved a distance v1T = (v cos θ)(2πm/qB) in the

direction of B.

26 ∙∙ A proton with velocity v = 107 m/s enters a region of uniform magnetic field B = 0.8 T, which is into the

page, as shown in Figure 28-33. The angle θ = 60°. Find the angle φ and the distance d.
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The trajectory of the particle is shown. From symmetry, it is evident that the

angleφ in Figure 28-33 equals the angle θ = 60°. From the adjoining figure

we see that d/2 = r sin 30°, or d = r. From  Equ. 28-6, r = d = 0.1305 m.

27 ∙∙ Suppose that in Figure 28-33 B = 0.6 T, the distance d = 0.4 m, and θ = 24°. Find the speed v and the angle

φ if the particles are (a) protons and (b) deuterons.

(a) r = d/(2 cos θ); φ = θ (see Problem 26)

Solve for vp

(b) Solve for vd; md = 2mp, qd = qp

r = 0.2/cos 24° m = 0.219 m = mpvp/qpB

vp = 1.26×107 m/s; φ = 24°
vd = 6.29×106 m/s; φ = 24°

28 ∙ A beam of positively charged particles passes undeflected from left to right through a velocity selector in

which the electric field is up. The beam is then reversed so that it travels from right to left. Will the beam now

be deflected in the velocity selector? If so, in which direction?

Yes; it will be deflected up.

29* ∙ A velocity selector has a magnetic field of magnitude 0.28 T perpendicular to an electric field of magnitude

0.46 MV/m. (a) What must the speed of a particle be for it to pass through undeflected? What energy must (b)

protons and (c) electrons have to pass through undeflected?

(a) Use Equ. 28-9

(b) K = 1/2mpv
2

(c) K = 1/2mev
2

v = (0.46×106/0.28) m/s = 1.64×106 m/s

K = 2.25×10–15 J = 14.1 keV

K = 7.68 eV

30 ∙ A beam of protons moves along the x axis in the positive x direction with a speed of 12.4 km/s through a

region of crossed fields balanced for zero deflection. (a) If there is a magnetic field of magnitude 0.85 T in the

positive y direction, find the magnitude and direction of the electric field. (b) Would electrons of the same

velocity be deflected by these fields? If so, in what direction?

(a) Use Equ. 28-9

qv××××B is in the z direction

(b) For electrons, both FB and FE are reversed

E = vB = 12.4×103×0.85 V/m = 10.5 kV/m

E = –10.5 kV/m k

Electrons are not deflected

31 ∙∙ The plates of a Thomson q/m apparatus are 6.0 cm long and are separated by 1.2 cm. The end of the plates

is 30.0 cm from the tube screen. The kinetic energy of the electrons is 2.8 keV. (a) If a potential of 25.0 V is

applied across the deflection plates, by how much will the beam deflect? (b) Find the magnitude of the crossed
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magnetic field that will allow the beam to pass through undeflected.
(a) 1. Find the speed of the electrons; 2K/m = v

2. Find E = V/d

3. mv

xqEx
  +  

v
x 

2m

qE
   =y   

2

211
2






∆  (see Equ. 28-10)

(b) B = E/v

v = 3.14×107 m/s

E = 2083 V/m

vx = 3.14×107 m/s; vy = eEt/me = 6.99×105 m/s

∆y = 7.35 mm

B = 25/(0.012×3.14×107) T = 6.63×10–5 T

32 ∙∙ Chlorine has two stable isotopes, 35Cl and 37Cl, whose natural abundances are about 76% and 24%,

respectively. Singly ionized chlorine gas is to be separated into its isotopic components using a mass

spectrometer. The magnetic field in the spectrometer is 1.2 T. What is the minimum value of the potential

through which these ions must be accelerated so that the separation between them is 1.4 cm?

From Equ. 28–12, 
B q

V 2m
   =   r

2

∆
; write ∆r = ∆s/2

Solve for ∆V

0.007 m = V )35    37( 101.20 4 ∆−× −

∆V = 122 kV

33* ∙∙ A singly ionized 24Mg ion (mass 3.983×10–26 kg) is accelerated through a 2.5-kV potential difference and

deflected in a magnetic field of 557 G in a mass spectrometer. (a) Find the radius of curvature of the orbit for

the ion. (b) What is the difference in radius for 26Mg and 24Mg ions? (Assume that their mass ratio is 26/24.)

(a)
B q

V m
   =   r

2

∆2
; evaluate for 24Mg

(b) r26 = r24 26/24 ; evaluate ∆r = r26 – r24

r24 = 63.5 cm

∆r = 63.5( 26/24 – 1) cm = 2.59 cm

34 ∙∙ A beam of 6Li and 7Li ions passes through a velocity selector and enters a magnetic spectrometer. If the

diameter of the orbit of the 6Li ions is 15 cm, what is the diameter of that for 7Li ions?

For constant v, r ∝  m D7 = D6(7/6) = 17.5 cm

35 ∙∙ In Example 28-6, determine the time required for a 58Ni ion and a 60Ni ion to complete the semicircular

path.

1. V/m 2q   =   v ∆ ; find v58 and v60

2. t = πr/v; find t58 and t60

v58 = 9.96×104 m/s; v60 = 9.79×104 m/s

t58 = 0.501π/9.96×104  s = 15.8 µs; t60 = 16.4 µs

36 ∙∙ Before entering a mass spectrometer, ions pass through a velocity selector consisting of parallel plates

separated by 2.0 mm and having a potential difference of 160 V. The magnetic field between the plates is 0.42

T. The magnetic field in the mass spectrometer is 1.2 T. Find (a) the speed of the ions entering the mass

spectrometer and (b) the difference in the diameters of the orbits of singly ionized 238U and 235U. (The mass of a
235U ion is 3.903×10–25 kg.)

(a) Use Equ. 28-9

(b) r235 = m235v/qB; find ∆D = 2r235(238/235 – 1)

v = 8×104/0.42 m/s = 1.90×105 m/s

∆D = 9.89 mm
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37* ∙∙ A cyclotron for accelerating protons has a magnetic field of 1.4 T and a radius of 0.7 m. (a) What is the

cyclotron frequency? (b) Find the maximum energy of the protons when they emerge. (c) How will your

answers change if deuterons, which have the same charge but twice the mass, are used instead of protons?

(a) Use Equ. 28-8

(b) Use Equ. 28-13

(c) From Equs. 28-8 and 28-13, K and f ∝  1/m

f = 21.3 MHz

K = 7.36×10–12 J = 46 MeV

fd = 10.7 MHz; Kd = 23 MeV

38 ∙∙ A certain cyclotron with magnetic field of 1.8 T is designed to accelerate protons to 25 MeV. (a) What is

the cyclotron frequency? (b) What must the minimum radius of the magnet be to achieve a 25-MeV emergence

energy? (c) If the alternating potential applied to the dees has a maximum value of 50 kV, how many

revolutions must the protons make before emerging with an energy of 25 MeV?

(a) Use Equ. 28-8

(b) From Equ. 28-13, r = /qBKm2 ; find r

(c) Energy gain/revolution = 100 keV

f = 27.4 MHz

r = 0.401 m; this is the minimum radius

Number of revolutions = 25×106/105 = 250

39 ∙∙ Show that the cyclotron frequencies of deuterons and alpha particles are the same and are half that of a

proton in the same magnetic field. (See Problem 22.)

From Equ. 28-8, f ∝  q/m. Since qd = e and qα = 2e, and md = 1/2mα, qd/md = qα/mα. Consequently, fd = fα.

Similarly, fd = fα = 1/2fp.

40 ∙∙ Show that the radius of the orbit of a charged particle in a cyclotron is proportional to the square root of the

number of orbits completed.

Since the energy gain per revolution is constant, K ∝  N, where N is the number of complete revolutions. The 

radius of an orbit is proportional to K1/2, so r ∝  N1/2.

41* ∙ What orientation of a current loop gives maximum torque?

The normal to the plane of the loop should be perpendicular to B.

42 ∙ A small circular coil of 20 turns of wire lies in a uniform magnetic field of 0.5 T such that the normal to the

plane of the coil makes an angle of 60° with the direction of B. The radius of the coil is 4 cm, and it carries a

current of 3 A. (a) What is the magnitude of the magnetic moment of the coil? (b) What is the magnitude of the

torque exerted on the coil?

(a) µ = NIA

(b) τ= µB sin θ
µ = 0.302 A.m2

τ= 0.131 N.m

43 ∙ What is the maximum torque on a 400-turn circular coil of radius 0.75 cm that carries a current of 1.6 mA

and resides in a uniform magnetic field of 0.25 T?

τmax = µB; µ = NIA; �max = NIAB τmax = 2.83×10–5 N.m

44 ∙ A current-carrying wire is bent into the shape of a square of sides L = 6 cm and is placed in the xy plane. It

carries a current I = 2.5 A. What is the torque on the wire if there is a uniform magnetic field of 0.3 T (a) in the

z direction, and (b) in the x direction?

(a) ττττ= µµµµ××××B; µµµµ = ±IA k; B = B k

(b) B = B I
ττττ= 0

ττττ= ±2.7×10–3 N.m j
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45* ∙ Repeat Problem 44 if the wire is bent into an equilateral triangle of sides 8 cm.

(a) ττττ= µµµµ××××B; µµµµ = ±IA k; B = B k

(b) B = B I
ττττ= 0

ττττ= ±2.08×10–3 N.m j

46 ∙∙ A rigid, circular loop of radius R and mass M carries a current I and lies in the xy plane on a rough, flat

table. There is a horizontal magnetic field of magnitude B. What is the minimum value of B such that one edge

of the loop will lift off the table?

Bmin = mg/πRI  (see Example 28-9).

47 ∙∙ A rectangular, 50-turn coil has sides 6.0 and 8.0 cm long and carries a current of 1.75 A. It is oriented as

shown in Figure 28-34 and pivoted about the z axis. (a) If the wire in the xy plane makes an angle θ = 37° with

the y axis as shown, what angle does the unit normal n make with the x axis? (b) Write an expression for n in

terms of the unit vectors i and j. (c) What is the magnetic moment of the coil? (d) Find the torque on the coil

when there is a uniform magnetic field B = 1.5 T j. (e) Find the potential energy of the coil in this field.

(a) From the figure it is evident that n makes an angle of –37° with the x axis.

(b) n = cos 37° i – sin 37° j = 0.8 i – 0.6 j

(c) µµµµ = NIA n

(d) ττττ= µµµµ××××B

(e) U = –µµµµ.B

µµµµ = 0.336 A.m2 i – 0.252 A.m2 j

ττττ= 0.504 N.m k

U = 0.378 J

48 ∙∙ The coil in Problem 47 is pivoted about the z axis and held at various positions in a uniform magnetic field

B = 2.0 T j. Sketch the position of the coil and find the torque exerted when the unit normal is (a) n = i, (b) n =

j, (c) n = – j, and (d) n = 2 / )j + i( .

(a) The configuration of the coil is shown.

Since B = 2.0 T j, ττττ= µµµµ××××B = µB k = 0.84 N.m k

(b) The configuration of the coil is shown.

Since B = 2.0 T j and µµµµ = µ j,  ττττ= µµµµ××××B = 0
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 (c) The configuration of the coil is shown.

As in part (b), ττττ= 0.

 (d) The configuration of the coil is shown.

In this case, ττττ= µµµµ××××B = 0.594 N.m k

49* ∙ The SI unit for the magnetic moment of a current loop is A⋅m2. Use this to show that 1 T = 1 N/A⋅m.

Since [τ] = [µ][B], [B] = [τ]/[µ] = N.m/A.m2 = N/A.m

50 ∙∙ A small magnet of length 6.8 cm is placed at an angle of 60° to the direction of a uniform magnetic field of

magnitude 0.04 T. The observed torque has a magnitude of 0.10 N⋅m. Find the magnetic moment of the magnet.

τ= µB sin θ; µ = τ/(B sin θ) µ = 2.89 A.m2

51 ∙∙ A wire loop consists of two semicircles connected by straight segments (Figure 28-35). The inner and outer

radii are 0.3 and 0.5 m, respectively. A current of 1.5 A flows in this loop with the current in the outer

semicircle in the clockwise direction. What is the magnetic moment of this current loop?

µ = IA; use right–hand rule to determine n µ = 1.5π(0.52 – 0.32)/2 A.m2 = 0.377 A.m2;

µµµµ points into the paper.

52 ∙∙ A wire of length L is wound into a circular coil of N loops. Show that when this coil carries a current I, its

magnetic moment has the magnitude IL2/4πN.

The circumference of each loop is L/N = 2πR and the area of each loop is πR2 = L2/4πN2. The magnetic moment

is µ = NIA = IL2/4πN.

53* ∙∙ A particle of charge q and mass m moves in a circle of radius r and with angular velocity Ω. (a) Show that
the average current is I = qω/2π and that the magnetic moment has the magnitude µ = .r q 2

2
1 ω  (b) Show that

the angular momentum of this particle has the magnitude L = mr2ω and that the magnetic moment and angular

momentum vectors are related by µµµµ = (q/2m)L.

(a) I = ∆q/∆t = q/T = qf = qω/2π. µ = IA = (qω/2π)(π r
2) = qω r

2/2

(b) The moment of inertia of the particle is mr2, and so L = mr2ω.  Both µµµµ and L point in the direction ωωωω;

so µµµµ = (q/2m)L.

54 ∙∙∙ A single loop of wire is placed around the circumference of a rectangular piece of cardboard whose length

and width are 70 and 20 cm, respectively. The cardboard is now folded along a line perpendicular to its length
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and midway between the two ends so that the two planes formed by the folded cardboard make an angle of 90°.

If the wire loop carries a current of 0.2 A, what is the magnitude of the magnetic moment of this system?

The two parts can be considered as two loops; each loop carries a current I, and at the fold line the two loop

currents cancel. The magnetic moments of the two loops make an angle of 90° with one another.

1. Find the magnetic moment of each loop

2. Add the two moments vectorially
µ = 0.014 A.m2

µtot = 0.014 2  A.m2 = 0.0198 A.m2

55 ∙∙∙ Repeat Problem 54 if the line along which the cardboard is folded is 40 cm from one end.

The two parts can be considered as two loops; each loop carries a current I, and at the fold line the two loop

currents cancel. The magnetic moments of the two loops make an angle of 90° with one another.

1. Find the magnetic moment of each loop

2. Add the two moments vectorially
µ1 = 0.016 A.m2; µ2 = 0.012 A.m2

µtot = (0.0162 + 0.0122)1/2 A.m2 = 0.020 A.m2

56 ∙∙∙ A hollow cylinder has length L and inner and outer radii Ri and Ro, respectively (Figure 28-36). The

cylinder carries a uniform charge density ρ. Derive an expression for the magnetic moment as a function of ω,

the angular velocity of rotation of the cylinder about its axis.

Consider an element of charge dq in a cylinder of length L, radius r, and thickness dr. We have dq = 2πLρ r dr. 

The element of current due to this rotating charge is dI = ω dq/2π = Lωρ r dr, and the corresponding element of

magnetic moment is dµ = A dI, where A = πr2. We now integrate:
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57* ∙∙∙ A nonconducting rod of mass M and length ! has a uniform charge per unit length λ and rotates with

angular velocity ωωωω about an axis through one end and perpendicular to the rod. (a) Consider a small segment of

the rod of length dx and charge dq = λ dx at a distance x from the pivot (Figure 28-37). Show that the magnetic
moment of this segment is 2

1 λωx2 dx. (b) Integrate your result to show that the total magnetic moment of the

rod is µ = 6
1 λω!  3. (c) Show that the magnetic moment µµµµ and angular momentum L are related by µµµµ =

(Q/2M)L, where Q is the total charge on the rod.
(a) The area enclosed by the rotating element of charge is πx2. The time required for one revolution is 1/f = 

2π/ω. The average current element  is then dI = λ  dxω/2π and dµ = A dI = 1/2λω x
2dx.

(b)  3
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(c) The angular momentum L = Iω, where I is the moment of inertia of the rod, I =    M(1/3) 2
! . The total 

charge carried by the rod is Q = λ ! . Thus µ = (Q/2M)L. Moreover, since ωωωω and L = Iωωωω point in the same 

direction, µµµµ = (Q/2M)L.

58 ∙∙∙ A nonuniform, nonconducting disk of mass M, radius R, and total charge Q has a surface charge density σ
= σ0r/R and a mass per unit area σm = (M/Q)σ.  The disk rotates with angular velocity ω about its axis. (a)
Show that the magnetic moment of the disk has a magnitude µ = 5

1 πωσ0R
 4 = 10

3 QωR2. (b) Show that the

magnetic moment µµµµ and angular momentum L are related by µµµµ = (Q/2M)L.

(a) We are given that σ = σ0r/R and σm = (M/Q)σ. An element of magnetic moment is then given by

dµ = A dI = πr2σ (ω/2π)(2πr) dr = (πωσ0/R)r4dr. Integrating from r = 0 to r = R one obtains µ = (1/5)πωσ0R
4.
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The total charge is the integral of 2πrσ dr from r = 0 to r = R, where σ = σ0r/R. Thus Q = 2πR2σ0/3, and

σ0 = 3Q/2πR2. Substituting this expression for σ0 into the result for µ one obtains µ = 3QωR2/10.

(b) The moment of inertia of the disk with a surface mass density σm is given by
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πσ  = (3/5)MR2 and L = Iωωωω = (3/5)MR2ωωωω. Since µµµµ also points

in the direction of ωωωω we see that µµµµ = (Q/2M)L.

59 ∙∙∙ A spherical shell of radius R carries a surface charge density σ. The sphere rotates about its diameter with

angular velocity ω. Find the magnetic moment of the rotating sphere.

For the shell, Q = 4πR2σ. The angular momentum of a shell of mass M for rotation about a diameter is given by

L= Iωωωω = (2/3)MR2ωωωω. Applying the general expression µµµµ = (Q/2M)L one finds µµµµ = (4π/3)σR4ωωωω.

60 ∙∙∙ A solid sphere of radius R carries a uniform volume charge density ρ. The sphere rotates about its diameter

with angular velocity ω. Find the magnetic moment of this rotating sphere.

For the sphere, Q = (4π/3)ρ R3 and I = (2/5)MR2. Applying the general result  (Q/2M)Iωωωω , µ= (4π/15)ρ R5ωωωω.

61* ∙∙∙ A solid cylinder of radius R and length L carries a uniform charge density +ρ between r = 0 and r = Rs and

an equal charge density of opposite sign, –ρ, between r = Rs and r = R. What must be the radius Rs so that on

rotation of the cylinder about its axis the magnetic moment is zero?

For the solid cylinder of radius Rs, Q+ = πρ Rs
2L and L = Iωωωω = 1/2MRs

2ωωωω. Hence µµµµ+ = (Q+/2M)L = πρLRs
4ωωωω/4.

For the cylindrical shell, Q– = –πρL(R2 – Rs
2) and L = Iωωωω = 1/2M(Rs

2 + R2)ωωωω. Hence µµµµ– = –πρL(R4 – Rs
4)ωωωω/4.

Setting µµµµ+ +µµµµ– = 0 and solving for Rs one obtains Rs = R/21/4 = 0.841R.

62 ∙∙∙ A solid cylinder of radius R and length L carries a uniform charge density ρ = –ρ0 between r = 0 and r =

2
1 R and a positive charge density of equal magnitude, +ρ0, between r = 2

1 R and r = R (Figure 28-38). The

cylinder rotates about its axis with angular velocity ωωωω. Derive an expression for the magnetic moment of the

cylinder.

Here we can use the results of the previous problem. We now set Rs = R/2 in the expressions for µµµµ+ and µµµµ–,

changing the signs of the magnetic moments since ρ = –ρ0 for the inner cylinder and ρ = +ρ0 for the cylindrical

shell. The total magnetic moment is then given by µµµµ= (πρ0Lωωωω/4)[R4 – R4/16 – R4/16] = 7πρ0LR4ωωωω/32.

63 ∙∙∙ A cylindrical shell of length L with inner radius Ri and outer radius Ro carries a uniform charge density,

+ρ0, between Ri and radius Rs and an equal charge density of opposite sign, –ρ0, between Rs and Ro. The

cylinder rotates about its axis with angular velocity ωωωω.  Derive an expression for the magnetic moment of this

cylinder.

For the inner cylindrical shell (see Problem 61), µµµµi = πρ0L(Rs
4 – Ri

4)ωωωω/4, while for the outer shell,

µµµµo = –πρ0L(Ro
4 – Rs

4)ωωωω/4. The total magnetic moment is µµµµi + µµµµo = –(πρ0Lωωωω/4)(Ro
4 + Ri

4 – 2Rs
4).

64 ∙∙∙ A solid sphere of radius R carries a uniform charge density, +ρ0, between r = 0 and r = Rs and an equal

charge density of opposite sign, –ρ0, between r = Rs and r = R. The sphere rotates about its diameter with

angular velocity ω.  Find Rs such that magnetic moment of the sphere is zero. What is the net charge carried by

the sphere?

For the inner sphere of radius Rs, Qi = 4πρ0Rs
3/3 and L = 2MRs

2ωωωω/5. Hence µµµµi = 4πρ0Rs
5ωωωω/15. For the outer

spherical shell, the charge is Qo = –(4πρ0/3)(R3 – Rs
3). If ρ is the mass density, then Mo = (4πρ/3)(R3 – Rs

3) and

the moment of inertia of the spherical shell is I = (2/5)(4πρ/3)(R5 – Rs
5). Using the general result µµµµ= (Q/2M)L

one obtains µµµµo = –(4πρ0/15)(R5 – Rs
5)ωωωω. Setting µµµµi + µµµµo = 0 and solving for Rs one finds Rs = R/21/5 = 0.871R.

The net charge carried by the sphere is Q = Qi + Qo, where Qi and Qo are given above. Setting Rs = R/21/5 one

obtains Q = 22/5(4πρ0/3)R3.
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65* ∙∙∙ A solid sphere of radius R carries a uniform charge density, +ρ0, between r = 0 and r = 2
1 R and an equal

charge density of opposite sign, –ρ0, between r = 2
1 0R and r = R. The sphere rotates about its diameter with

angular velocity ω. Derive an expression for the magnetic moment of this rotating sphere.

For the inner sphere of radius Ri, Qi = 4πρ0Ri
3/3 and L = 2MRi

2ωωωω/5. Hence µµµµi = 4πρ0Ri
5ωωωω/15. For the outer

spherical shell, the charge is Qo = –(4πρ0/3)(R3 – Ri
3). If ρ is the mass density, then Mo = (4πρ/3)(R3 – Ri

3) and

the moment of inertia of the spherical shell is I = (2/5)(4πρ/3)(R5 – Ri
5). Using the general result µµµµ= (Q/2M)L

one obtains µµµµo = –(4πρ0/15)(R5 – Ri
5)ωωωω. We now set Ri = R/2 and µµµµ= µµµµi + µµµµo and obtain µµµµ= –πρ0R

5ωωωω/4.

66 ∙ A metal strip 2.0 cm wide and 0.1 cm thick carries a current of 20 A in a uniform magnetic field of 2.0 T,

as shown in Figure 28-39. The Hall voltage is measured to be 4.27 µV. (a) Calculate the drift velocity of the

electrons in the strip. (b) Find the number density of the charge carriers in the strip.(c) Is point a or b at the

higher potential?

(a) From Equ. 28-17, vd = VH/Bw

(b) Use Equ. 28-18

(c) E = vd×B; vd directed opposite to I

vd = 0.107 mm/s

n = 5.85×1028 m–3

E points from b to a; Va < Vb

67 ∙∙ The number density of free electrons in copper is 8.47×1022 electrons per cubic centimeter. If the metal

strip in Figure 28-39 is copper and the current is 10 A, find (a) the drift velocity vd and (b) the Hall voltage.

(Assume that the magnetic field is 2.0 T.)

(a) vd = I/wten

(b) VH = vdBw

vd = 3.69×10–5 m/s

VH = 1.48 µV

68 ∙∙ A copper strip (n = 8.47×1022 electrons per cubic centimeter) 2 cm wide and 0.1 cm thick is used to

measure the magnitudes of unknown magnetic fields that are perpendicular to the strip. Find the magnitude of

B when I = 20 A and the Hall voltage is (a) 2.00 µV, (b) 5.25 µV, and (c) 8.00 µV.

(a), (b), (c) B = VHnte/I (a) B = 1.36 T  (b) B = 3.56 T  (c) B = 5.42 T

69* ∙∙ Because blood contains charged ions, moving blood develops a Hall voltage across the diameter of an

artery. A large artery with a diameter of 0.85 cm has a flow speed of 0.6 m/s. If a section of this artery is in a

magnetic field of 0.2 T, what is the potential difference across the diameter of the artery?

VH = vdBw VH = 1.02 mV

70 ∙∙ The Hall coefficient R is defined as ,BJ / E = R zxy  where Jx is the current per unit area in the x direction

in the slab, Bz is the magnetic field in the z direction, and Ey is the resulting Hall field in the y direction. Show

that the Hall coefficient is 1/nq, where q is the charge of the charge carriers, –1.6×10–19 C if they are electrons.

(The Hall coefficients of monovalent metals, such as copper, silver, and sodium, are therefore negative.)

VH = EHw and J = I/wt. Using the defintion of R we have R = VHt/IB = (IB/ntq)t/IB = 1/nq. The direction of E is 

vd×B, where vd is in the direction of I if q is positive. It follows that if J is in the x direction and B points in the

z direction, then EH is in the y direction for q positive. If q is negative, vd is reversed, and so is EH.

71 ∙∙ Aluminum has a density of 2.7×103 kg/m3 and a molar mass of 27 g/mol. The Hall coefficient of aluminum

is R = –0.3×10–10 m3/C. (See Problem 70 for the definition of R.) Find the number of conduction electrons per

aluminum atom.

n = 1/Re n = 2.08×1029 m–3; number of electrons/atom = 3.46
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72 ∙∙ Magnesium is a divalent metal. Its density is 1.74×103 kg/m3 and its molar mass is 24.3 g/mol. Assuming

that each magnesium atom contributes two conduction electrons, what should be the Hall coefficient of

magnesium? How does your result compare to the measured value of –0.94×10–10 m3/C?

1. Find n

2. R = 1/ne

n = 2×6.02×1029 ×1.74/24.3 m–3 = 8.62×1028  m–3

R = –0.725×10–10 m3/C; thus nexp ≅  1.5 electrons/atom

73* ∙ True or false:

(a) The magnetic force on a moving charged particle is always perpendicular to the velocity of the particle.

(b) The torque on a magnet tends to align the magnetic moment in the direction of the magnetic field.

(c) A current loop in a uniform magnetic field behaves like a small magnet.

(d) The period of a particle moving in a circle in a magnetic field is proportional to the radius of the circle.

(e) The drift velocity of electrons in a wire can be determined from the Hall effect.

(a) True  (b) True  (c) True  (d) False  (e) True

74 ∙ Show that the force on a current element is the same in direction and magnitude regardless of whether

positive charges, negative charges, or a mixture of positive and negative charges create the current.

From Equ. 28-4, the direction of the force does not depend on the sign of the charges that carry the current.

75 ∙ A proton with a charge +e is moving with a speed v at 50° to the direction of a magnetic field B. The

component of the resulting force on the proton in the direction of B is (a) evB sin 50° cos 50°.  (b) evB cos 50°.

 (c) zero.  (d) evB sin 50°.  (e) none of these.

(c)

76 ∙ If the magnetic field vector is directed toward the north and a positively charged particle is moving toward

the east, what is the direction of the magnetic force on the particle?

From Equ. 28-1, F points up.

77* ∙ A positively charged particle is moving northward in a magnetic field. The magnetic force on the particle is

toward the northeast. What is the direction of the magnetic field?  (a) Up  (b) West  (c) South  (d) Down  (e)

This situation cannot exist.

(e)

78 ∙ A 7Li nucleus with a charge of +3e and a mass of 7 u (1 u = 1.66×10–27 kg) and a proton with charge  +e

and mass 1 u are both moving in a plane perpendicular to a magnetic field B. The two particles have the same

momentum. The ratio of the radius of curvature of the path of the proton Rp to that of the 7Li nucleus, RLi is  (a)

Rp/RLi = 3.  (b) Rp/RLi = 1/3.  (c) Rp/RLi = 1/7.  (d) Rp/RLi = 3/7.  (e) none of these.

(a)

79 ∙ An electron moving with velocity v to the right enters a region of uniform magnetic field that points out of

the paper. After the electron enters this region, it will be

(a) deflected out of the plane of the paper.

(b) deflected into the plane of the paper.

(c) deflected upward.

(d) deflected downward.

(e) undeviated in its motion.

(c)

80 ∙ How are magnetic field lines similar to electric field lines? How are they different?
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Magnetic field lines are similar to electric field lines in that their density is a measure of the strength of the field;

the lines point in the direction of the field; also, magnetic field lines do not cross. They differ from electric field

lines in that magnetic field lines must close on themselves (there are no isolated magnetic poles), and the force on

a charge depends on the velocity of the charge and is perpendicular to the magnetic field lines.

81* ∙ A long wire parallel to the x axis carries a current of 6.5 A in the positive x direction. There is a uniform

magnetic field B = 1.35 T j. Find the force per unit length on the wire.

Use Equ. 28-4 F = 8.775 N/m k

82 ∙ An alpha particle (charge +2e) travels in a circular path of radius 0.5 m in a magnetic field of 1.0 T. Find

(a) the period, (b) the speed, and (c) the kinetic energy (in electron volts) of the alpha particle. Take m =

6.65×10–27 kg for the mass of the alpha particle.

(a) T = 2πm/qB; q = 2e, mα = 6.65×10–27 kg

(b) v = 2πr/T

(c) K = 1/2mαv2/e  eV

T = 0.131 µs

v = 2.40×107 m/s

K = 12.0 MeV

83 ∙ If a current I in a given wire and a magnetic field B are known, the force F on the current is uniquely

determined. Show that knowing F and I does not provide complete knowledge of B.

If only F and I are known, one can only conclude that the magnetic field B is in the plane perpendicular to F. 

The specific direction of B is undetermined.

84 ∙∙ The pole strength qm of a bar magnet is defined by qm = |µµµµ|/L, where L is the length of the magnet. Show
that the torque exerted on a bar magnet in a uniform magnetic field B is the same as if a force Bmq+  is exerted

on the north pole and a force Bmq−  is exerted on the south pole.

The configuration of the magnet and field are shown in the figure.

Then

τ= (BqmL/2) sin θ  + (BqmL/2) sin θ = µB sin θ = µµµµ××××B, where µ = qmL.

85* ∙∙ A particle of mass m and charge q enters a region where there is a uniform magnetic field B along the x

axis. The initial velocity of the particle is v = v0x i + v0y j so the particle moves in a helix. (a) Show that the

radius of the helix is r = mv0y /qB. (b) Show that the particle takes a time t = 2πm/qB to make one orbit around

the helix.

(a) Since B = B i, v0××××B = v0yB k; i.e., vx = v0x and motion on the direction of the magnetic field is not affected

by the field. In the plane perpendicular to i the motion is as described in Section 28–2, and the radius of the

circular path is given by Equ. 28-6 with v = v0y, i.e., r = mv0y /qB.

(b) The time for one complete orbit is given by Equ. 28-7, i.e., t = 2πm/qB.

86 ∙∙ A metal crossbar of mass M rides on a pair of long, horizontal conducting rails separated by a distance

! and connected to a device that supplies constant current I to the circuit, as shown in Figure 28-40. A uniform

magnetic field B is established as shown. (a) If there is no friction and the bar starts from rest at t = 0, show
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that at time t the bar has velocity v = (BI ! /M)t. (b) In which direction will the bar move? (c) If the coefficient

of static friction is µs, find the minimum field B necessary to start the bar moving.

(a), (b) The force on the bar is F = BI !  and its acceleration is F/M = BI ! /M = a. In the absence of friction the 

velocity is v = at = BI !  t/M and is directed to the right since I ! ××××B is directed to the right.

(c) To start the bar moving, Fmin = µsMg = BminI ! . So Bmin = µsMg/I ! .

87 ∙∙ Assume that the rails in Figure 28-40 are frictionless but tilted upward so that they make an angle θ with

the horizontal. (a) What vertical magnetic field B is needed to keep the bar from sliding down the rails? (b)

What is the acceleration of the bar if B has twice the value found in part (a)?

(a) Note that with the rails tilted, F still points horizontally to the right. The component of F along the rail is

then

BI !  cos θ  and the component of Mg along the rail is -Mg sin θ. To hold the bar in position Ftot = 0. Solving for 

B one obtains B = (Mg/I ! ) tan θ.

(b) If B has twice the value found in (a), then the net force along the rail is Mg sin θ directed upward.

Consequently, a = g sin θ.

88 ∙∙ A long, narrow bar magnet that has magnetic moment µµµµ parallel to its long axis is suspended at its center as

a frictionless compass needle. When placed in a magnetic field B, the needle lines up with the field. If it is

displaced by a small angle θ, show that the needle will oscillate about its equilibrium position with frequency
,I / B = f 2

1 µπ  where I is the moment of inertia about the point of suspension.

τ= I(d2θ/dt2) = –µB sin θ. For θ << 1, sin θ ≅  θ. Thus (d2θ/dt2) = –(µB/I)θ. This is the differential equation for

the SHO (see Equ. 14-2), and on comparison with Equ. 14-12 one obtains  f = 
π

µ
2

B/I
.

89* ∙∙ A conducting wire is parallel to the y axis. It moves in the positive x direction with a speed of 20 m/s in a

magnetic field B = 0.5 T k. (a) What are the magnitude and direction of the magnetic force on an electron in

the conductor? (b) Because of this magnetic force, electrons move to one end of the wire leaving the other end

positively charged, until the electric field due to this charge separation exerts a force on the electrons that

balances the magnetic force. Find the magnitude and direction of this electric field in the steady state. (c)

Suppose the moving wire is 2 m long. What is the potential difference between its two ends due to this

electric field?

(a) Use Equ. 28–1; q = –1.6×10–19 C

(b) At steady state, qE + F = 0

(c) ∆V = E ∆x

F = 1.6×10–18 N j

E = 10 V/m j

∆V = 20 V

90  ∙∙∙ The rectangular frame in Figure 28-41 is free to rotate about the axis A-A on the horizontal shaft. The

frame is 10 cm long and 6 cm wide and the rods that make up the frame have a mass per unit length of 20 g/cm.

A uniform magnetic field B = 0.2 T is directed as shown. A current may be sent around the frame by means of

the wires attached at the top. (a) If no current passes through the frame, what is the period of this physical

pendulum for small oscillations? (b) If a current of 8.0 A passes through the frame in the direction indicated by

the arrow, what is then the period of this physical pendulum? (c) Suppose the direction of the current is

opposite to that shown. The frame is displaced from the vertical by some angle θ. What must be the magnitude

of the current so that this frame will be in equilibrium?

(a) 1. Find the moment of inertia of the frame I = [2(1/3)×0.2×0.12 + 0.12×0.12] kg.m2 = 2.53 g.m2
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2. Find D, the distance from the pivot to the

CM

3. Use Equ. 14-31

(b) 1. With B and I as shown, Fm is downward; 

total restoring torque = (MgD + BIA)θ
2. Use Equ. 14-31 with MgD → (MgD + BIA)

(c) The total torque = 0; MgD sin θ = BIA sin θ

D = (0.4×0.05 + 0.12×0.1)/0.52  m = 0.0615 m

T = 0.565 s

τtot = (0.52×9.81×0.0615 + 0.2×8.0×0.006)θ  N.m =

0.323θ  N.m

T = 0.556 s

I = MgD/BA = 261 A

91 ∙∙∙ A stiff, straight, horizontal wire of length 25 cm and mass 20 g is supported by electrical contacts at its

ends, but is otherwise free to move vertically upward. The wire is in a uniform, horizontal magnetic field of

magnitude

0.4 T perpendicular to the wire. A switch connecting the wire to a battery is closed and the wire is shot upward,

rising to a maximum height h. The battery delivers a total charge of 2 C during the short time it makes contact

with the wire. Find the height h.

1. ∆p = F∆t = BI ! ∆t = BQ !  = mv0; evaluate v0

2. h = v0
2/2g

v0 = 0.4×2×0.25/0.02 m/s = 10 m/s

h = 5.10 m

92 ∙∙∙ A solid sphere of radius R carries a charge density –ρ0 in the region r = 0 to r = Rs and an equal charge

density of opposite sign, +ρ0, between r = Rs and r = R. The net charge carried by the sphere is zero. (a) What

must be the ratio R/Rs? (b) If this sphere rotates with angular velocity ω about its diameter, what is its magnetic

moment?

(a) Q+ = (4π/3)Rs
3ρ0 ; Q– = –(4π/3)(R3 – Rs

3)ρ0 ;

Q+ + Q– = 0; solve for Rs.

(b) Use the result of Problem 64 with Rs = R/21/3

2Rs
3 = R3; Rs = R/21/3 = 0.794R

µµµµ = –(4π/15)ρ0R
5(1 – 2–2/3)ωωωω = –0.31ρ0R

5ωωωω

93* ∙∙∙ A circular loop of wire with mass M carries a current I in a uniform magnetic field. It is initially in

equilibrium with its magnetic moment vector aligned with the magnetic field. The loop is given a small twist

about a diameter and then released. What is the period of the motion? (Assume that the only torque exerted on

the loop is due to the magnetic field.)

τ= –µB sin θ ≅  –IABθ  = –πR2IBθ = MR2(d2θ/dt2). This is the differential equation for a SHO, and comparison 

with Equs. 14-2 and 14-12 shows that T = 2π B) I M/(π .

94 ∙∙∙ A small bar magnet has a magnetic moment µthat makes an angle θ with the x axis and lies in a nonuniform
magnetic field given by .j (y) B + i (x) B = B yx  Use Fx = – dU/dx and Fy = – dU/dy to show that there is a net

force on the magnet that is given by

jF  
y

B
  

x
B 

y
y

x
x ∂

∂
∂

∂≈ µµ  + i  

Let µµµµ = µx i + µy j + µz k. U = –µµµµ .B = –µxBx – µyBy. Since µis constant but B depends on x and y,

Fx = –dU/dx = µx(∂Bx/∂x), Fy = –dU/dy = µy(∂By/∂y), and F = µx(∂B/∂x) i + µy(∂By/∂y) j.


