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INTRODUCTION
Copulas are a way of formalising dependence structures of random
vectors. Although they have been known about for a long time
(Sklar (1959)), they have been rediscovered relatively recently in
applied sciences (biostatistics, reliability, biology, etc). In finance,
they have become a standard tool with broad applications: multi-
asset pricing (especially complex credit derivatives), credit portfolio
modelling, risk management, etc. For example, see Li (1999), Patton
(2001) and Longin and Solnik (1995).

Although the concept of copulas is well understood, it is now
recognised that their empirical estimation is a harder and trickier
task. Many traps and technical difficulties are present, and these
are, most of the time, ignored or underestimated by practitioners.
The problem is that the estimation of copulas implies usually
that every marginal distribution of the underlying random vectors
must be evaluated and plugged into an estimated multivariate
distribution. Such a procedure produces unexpected and unusual
effects with respect to the usual statistical procedures: non-standard
limiting behaviours, noisy estimations, etc (eg, see the discussion in
Fermanian and Scaillet, 2005).

In this chapter, we focus on the practical issues practitioners are
faced with, in particular concerning estimation and visualisation.
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COPULAS

In the first section, we give a general setting for the estimation
of copulas. Such a framework embraces most of the available
techniques. In the second section, we deal with the estimation of
the copula density itself, with a particular focus on estimation near
the boundaries of the unit square.

A GENERAL APPROACH FOR THE ESTIMATION OF
COPULA FUNCTIONS
Copulas involve several underlying functions: the marginal cumu-
lative distribution functions (CDF) and a joint CDF. To estimate
copula functions, the first issue consists in specifying how to esti-
mate separately the margins and the joint law. Moreover, some of
these functions can be fully known. Depending on the assumptions
made, some quantities have to be estimated parametrically, or semi-
or even non-parametrically. In the latter case, the practitioner has to
choose between the usual methodology of using “empirical coun-
terparts” and invoking smoothing methods well-known in statis-
tics: kernels, wavelets, orthogonal polynomials, nearest neighbours,
etc.

Obviously, the estimation precision and the graphical results are
functions of all these choices. A true known marginal can greatly
improve the results under well-specification, but the reverse is
true under misspecification (even under a light one). Without any
valuable prior information, non-parametric estimation should be
favoured, especially for marginal estimation.

To illustrate this point Figure 2.1 shows the graphical behaviour
of the exceeding probability function

χ : p �→ P(X > F−1
X (p), Y > F−1

Y (p))

If the true underlying model is a multivariate Student vector (X, Y),
the associated probability is the upper line. If either marginal dis-
tributions are misspecified (eg, Gaussian marginal distributions),
or the dependence structure is misspecified (eg, joint Gaussian dis-
tribution), these probabilities are always underestimated, especially
in the tails.

Now, let us introduce our framework formally. Consider the
estimation of a d-dimensional copula C, that can be written

C(u) = F(F−1
1 (u1), . . . , F−1

d (ud))
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Figure 2.1 (a) The function χ when (X, Y) is a Student random
vector, and when either margins or the dependence structure are
misspecified. (b) The associated ratios of exceeding probability
corresponding to the χ function obtained for the misspecified model
versus the true χ (for the true Student model).
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Obviously, all the marginal CDFs have been denoted by Fk, k =
1, . . . , d, when the joint CDF is F. Throughout this chapter, the
inverse operator −1 should be understood to be a generalised
inverse; namely that for every function G,

G−1(x) = inf{y | G(y) ≥ x}

Assume we have observed a T-sample (Xi)i=1,...,T. These
are some realisations of the d-random vector X = (X1, . . . , Xd).
Note that we do not assume that Xi = (X1i, . . . , Xdi) are mutually
independent (at least for the moment).

Every marginal CDF, say the kth, can be estimated empirically by

F(1)
k (x) =

1
T

T

∑
i=1

1(Xki ≤ x)

3
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COPULAS

and [F(1)
k ]−1(uk) is simply the empirical quantile corresponding to

uk ∈ [0, 1]. Another means of estimation is to smooth such CDFs,
and the simplest way is to invoke the kernel method (eg, see Härdle
and Linton (1994) or Pagan and Ullah (1999) for an introduction):
consider a univariate kernel function K : R −→ R,

∫
K = 1, and a

bandwidth sequence hT (or simply h hereafter), hT > 0 and hT −→ 0
when T → ∞. Then, Fk(x) can be estimated by

F(2)
k (x) =

1
T

T

∑
i=1

K

(
x − Xki

h

)

for every real number x, by denoting K the primitive function of K:
K(x) =

∫ x
−∞ K.

There exists another common case: assume that an underlying
parametric model has been fitted previously for the kth margin.
Then, the natural estimator for Fk(x) is some CDF F(3)

k (x, θ̂k) that
depends on the relevant estimated parameter θ̂k. When such a
model is well-specified, θ̂k is tending almost surely to a value θk

such that Fk(·) = F(3)
k (·, θk). The last limiting case is the knowledge

of the true CDF Fk. Formally, we will set F(0)
k = Fk.

Similarly, the joint CDF F can be estimated empirically by

F(1)(x) =
1
T

T

∑
i=1

1(Xi ≤ x)

or by the kernel method

F(2)(x) =
1
T

T

∑
i=1

K

(
x − Xi

h

)

with a d-dimensional kernel K, so that

K(x) =
∫ x1

−∞
. . .

∫ xd

−∞
K

for every x = (x1, . . . , xd) ∈ Rd. Besides, there may exist an under-
lying parametric model for X: F is assumed to belong to a set of
multivariate CDFs indexed by a parameter τ. A consistent estima-
tion τ̂ for the “true” value τ allows setting F(3)(·) = F(·, τ̂). Finally,
we can denote F(0) = F.

4
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Therefore, generally speaking, a d-dimensional copula C can be
estimated by

Ĉ(u) = F(j)
(
[F(j1)

1 ]−1(u1), . . . , [F(jd)
d ]−1(ud)

)
(2.1)

for each of the indexes j, j1, j2, . . . , jd that belong to {0, 1, 2, 3}.
Thus, it is not so obvious to discriminate between all these com-
petitors, especially without any parametric assumption.

Every estimation method has its own advantages and draw-
backs. The full empirical method (j = j1 = · · · = jd = 1 with the
notations of Equation (2.1)) has been introduced in Deheuvels
(1979, 1981a, 1981b) and studied more recently by Fermanian et al
(2004), in the independent setting, and by Doukhan et al (2004)
in a dependent framework. It provides a robust and universal
way for estimation purposes. Nonetheless, its discontinuous fea-
ture induces some difficulties: the graphical representations of the
copula can be not very nice from a visual point of view and not intu-
itive. Moreover, there is no unique choice for building the inverse
function of F(1)

k . In particular, if Xk1 ≤ · · · ≤ XkT is the ordered

sample on the k-axis, the inverse function of F(1)
k at some point i/T

may be chosen arbitrarily between Xki and Xk(i+1). Finally, since
the copula estimator is not differentiable when only one empirical
CDF is involved in Equation (2.1), it cannot, for example, be used
straightforwardly to derive an estimate of the associated copula
density (by differentiation of Ĉ(u) with respect to all its arguments)
or for optimisation purposes.

Smooth estimators are better suited to graphical usage, and can
provide more easily the intuition to achieve the “true” underlying
parametric distribution. However, they depend on an auxiliary
smoothing parameter (eg, h in the case of the kernel method), and
suffer from the well-known “curse of dimensionality”: the higher
the dimension (d with our notations), the worse the performance
in terms of convergence rates. In other words, as the dimension
increases, the complexity of the problem increases exponentially.2

Such methods can be invoked safely in practice when d ≤ 3 and for
sample sizes larger than, say, two hundred observations (which is
usual in finance). The theory of fully smoothed copulas (j = j1 =
· · · = jd = 2 with the notation of Equation (2.1)) can be found in
Fermanian and Scaillet (2003) in a strongly dependent framework.

5
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COPULAS

A more comfortable situation exists when “good” parametric
assumptions are put into (2.1) for the marginal CDFs and/or the
joint CDF F. The former case is relatively usual because there exist
a great many univariate models for financial variables (eg, see
Alexander (2002)). Nevertheless, for a lot of dynamic models (eg,
stochastic volatility models), their (unconditional) marginal CDFs
cannot be written explicitly. Obviously, we are under the threat of a
misspecification, which can have disastrous effects (see Fermanian
and Scaillet (2005)). Concerning a parametric assumption for F
itself, our opinion is balanced. At first glance, we are absolutely free
to choose an “interesting” parametric family F of d-dimensional
CDFs that would contain the true law F. But, by setting for every
real number x and every k = 1, . . . , d

F(3)
k (x) = F(+∞, . . . , +∞, x, +∞, . . . |τ̂)

where x is the kth argument of F, we should have found the “right”
marginal distributions too, to be self-coherent. Indeed, the joint law
contains the marginal ones. Then, the estimated copula should be

Ĉ(u) = F(3)
(
[F(3)

1 ]−1(u1), [F(3)
2 ]−1(u2), . . . , [F(3)

d ]−1(ud)
)

In reality, the problem is finding a sufficiently rich family F ex ante
that might generate all empirical features. What people do is more
clever. They choose a parametric family F∗ and other marginal
parametric families F∗

k , k = 1, . . . , d, and set

C(u) = F̂∗
(
[F̂∗

1 ]−1(u1), . . . , [F̂∗
d ]−1(ud)

)
for some F̂∗ ∈ F , and F̂∗

k ∈ Fk for every k = 1, . . . , d. Note that the
choice of all the parametric families is absolutely free of constraints,
and that these families are not related to each other (they can
be arbitrary and independently chosen). This is the usual way of
generating new copula families. The price to be paid is that the true
joint law F does not belong to F∗ generally speaking. Similarly, the
true marginal laws Fk do not belong to the sets F∗

k in general.
If a parametric assumption is made in such a case, the standard

estimation procedure is semi-parametric: the copula is a function of
some parameter θ = (τ, θ1, . . . , θd). Recall that the copula density c

6
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

is the derivative of C with respect to each of its arguments:

cθ(u) =
∂d

∂1 . . . ∂d
C(u)

Here, the copula density cθ itself can be calculated under a full para-
metric assumption. Thus, we get an estimator of θ by maximizing
the log-likelihood

T

∑
i=1

log cθ(F̂1(X1i), . . . , F̂d(Xdi))

for some
√

T-convergent estimates F̂k(Xki) of the marginal CDFs.
Obviously, we may choose F̂k = F(1)

k or F(2)
k .

Note that such an estimator is called an “omnibus estima-
tor”, and it can be seen as a maximum-likelihood estimator of
θ after replacing the unobservable ranks Fk(Xki) by the pseudo-
observations. The asymptotic distribution of the estimator has been
studied in Genest et al (1995) and Shi and Louis (1995). The main
aim of semi-parametric estimation is to avoid possible misspecifica-
tion of marginal distributions, which may overestimate the degree
of dependence in the data (eg, see Silvapulle et al (2004)). Note
finally that Chen and Fan (2004a, 2004b) have developed the theory
of this semi-parametric estimator in a time-series context.

Thus, depending on the degree of assumptions about the joint
and marginal models, there exists a wide range of possibilities for
estimating copula functions as provided by Equation (2.1). The only
trap to avoid is to be sure that the assumptions made for margins
are consistent with those drawn for the joint law. The statistical
properties of all these estimators are the usual ones, namely con-
sistency and asymptotic normality.

THE ESTIMATION OF COPULA DENSITIES
After the estimation of C by Ĉ as in Equation (2.1), it is tempting to
define an estimate of the copula density c at every u ∈ [0, 1]d by

ĉ(u) =
∂d

∂1 · · · ∂d
Ĉ(u)

Unfortunately, this works only when Ĉ is differentiable. Most of
the time, this is the case when the marginal and joint CDFs are

7
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COPULAS

parametric or nonparametrically smoothed (by the kernel method,
for instance). In the latter case and when d is “large” (more than 3),
the estimation of c can be relatively poor because of the curse of
dimensionality.

Nonparametric estimation procedures for the density of a copula
function have already been proposed by Behnen et al (1985) and
Gijbels and Mielniczuk (1990). These procedures rely on symmetric
kernels, and have been detailed in the context of uncensored data.
Unfortunately, such techniques are not consistent on the bound-
aries of [0, 1]d. They suffer from the so-called boundary bias. Such
bias can be significant in the neighbourhood of the boundaries
too, depending on the size of the bandwidth. Hereafter, we will
propose some solutions to cope with such issues. To ease notation
and without a lack of generality, we will restrict ourselves to the
bivariate case (d = 2). Thus, our random vector will be denoted by
(X, Y) instead of (X1, X2).

In the following sections, we will study some properties of some
kernel-based estimators, and illustrate some of these by simula-
tions. The benchmark will be a simulated sample, whose size is
T = 1,000 and that will be generated by a Frank copula with copula
density

cFr(u, v, θ) =
θ[1 − e−θ ]e−θ(u+v)

([1 − e−θ ] − (1 − e−θu)(1 − e−θv))2

and Kendall’s tau equal to 0.5. Hence, the copula parameter is θ =
5.74. This density can be seen in Figure 2.2 together with its contour
plot on the right.

Nonparametric density estimation for distributions with finite
support
An initial approach relies on a kernel-based estimation of the den-
sity based on the pseudo-observations (FX,T(Xi), FY,T(Yi)), where
FX,T and FY,T are the empirical distribution functions

FX,T(x) =
1

T + 1

T

∑
i=1

1(Xi ≤ x) and FY,T(y) =
1

T + 1

T

∑
i=1

1(Yi ≤ y)

where the factor T + 1 (instead of standard T, as in Deheuvels
(1979) for instance) allows the avoidance of boundary problems: the

8

Revised Proof Ref: 33259e September 29, 2006



R
ev

is
ed

 p
ro

of
s

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

quantities FX,T(Xi) and FY,T(Yi) are the ranks of the Xi’s and the Yi’s
divided by T + 1, and therefore take values{

1
T + 1

,
2

T + 1
, . . . ,

T
T + 1

}

Standard kernel-based estimators of the density of pseudo-
observations yield, using diagonal bandwidth (see Wand and Jones
(1995))

ĉh(u, v) =
1

Th2

T

∑
i=1

K
(

u − FX,T(Xi)
h

,
v − FY,T(Yi)

h

)

for a bivariate kernel K : R2 −→ R,
∫

K = 1.
The variance of the estimator can be derived, and is O((Th2)−1).

Moreover, it is asymptotically normal at every point (u, v) ∈ (0, 1):

ĉh(u, v) − E(ĉh(u, v))√
Var(ĉh(u, v))

L−→ N (0, 1)

As a benchmark, Figure 2.2 shows the theoretical density of a
Frank copula. In Figure 2.3 we plot the standard Gaussian kernel
estimator based on the sample of pseudo-observations (Ûi, V̂i) ≡
(FX,T(Xi), FY,T(Yi)).

Recall that even if kernel estimates are consistent for distribu-
tions with unbounded support and the support is bounded, the
boundary bias can yield some “ill” underestimation (even if the
distribution is twice differentiable in the interior of its support).

We can explain this phenomenon easily in the univariate case.
Consider a T sample X1, . . . , XT of a positive random variable with
density f . The support of their density is then R+. Let K denote
a symmetric kernel, whose support is [−1, +1]. Then, for all x ≥ 0,
using a Taylor expansion, we get

E( f̂h(x)) =
∫ x/h

−1
K(y) f (x − hy) dy

= f (x) ·
∫ x/h

−1
K(y) dy

− h · f ′(x) ·
∫ x/h

−1
yK(y) dy + O(h2)

9
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COPULAS

Figure 2.2 Density of the Frank copula with a Kendall tau equal
to 0.5.
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Figure 2.3 Estimation of the copula density using a Gaussian kernel
based on 1,000 observations drawn from a Frank copula.
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Hence, since the kernel is symmetric,
∫ x/h
−1 K(y) dy h→0−−→ 1/2 when

x = 0, and therefore

E( f̂h(0)) = 1
2 f (0) + O(h)

Note that, if x > 0, the expression
∫ x/h
−1 K(y) dy is 1 when h is

sufficiently small (when x > h to be specific). Thus, this integral
cannot be one, uniformly, with respect to every x ∈ (0, 1]. And for

10
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Figure 2.4 Estimation of the uniform density on [0, 1] using a
Gaussian kernel and different bandwidth with (a) n = 100 and
(b) n = 1,000 observations.
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more general kernels, it has no reason to be equal to 1. In the
latter case, since this expression can be calculated, normalising
f̂h(x) by dividing by

∫ x/h
−1 K(z) dz (at each x) achieves consistency.

Nonetheless, it remains a bias that is of the order of O(h). Using
some boundary kernels (see Gasser and Müller (1979)), it is possible
to achieve O(h2) everywhere in the interior of the support.

Consider the case of variables uniformly distributed on [0, 1],
U1, . . . , Un. Figure 2.4 shows kernel-based estimators of the uni-
form density, with Gaussian kernel and different bandwidths, with
n = 100 and 1,000 simulated variables. In that case, for any h > 0,

E( f̂h(0)) =
∫ 1

0
Kh(y) dy =

1
h
√

2π

∫ 1

0
exp

(
− y2

2h2

)
dy h→0−−→ 1

2
=

f (0)
2

and in the interior, ie, x ∈ (0, 1),

E( f̂h(x)) =
∫ 1

0
Kh(y − x) dy

=
1

h
√

2π

∫ 1

0
exp

(
− (y − x)2

2h2

)
dy h→0−−→ 1 = f (x)

Dealing with bivariate copula densities, we observe the same
phenomenon. On boundaries, we obtain some “multiplicative

11
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COPULAS

Figure 2.5 Estimation of the copula density on the diagonal using a
(standard) Gaussian kernel with (a) 100 and (b) 1,0000 observations
drawn from a Frank copula.
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bias”, 1/4 in corners and 1/2 in the interior of borders. The addi-
tional bias is of the order of O(h) on the frontier, and standardO(h2)
in the interior. More precisely, in any corners (eg, (0, 0))

E(ĉh(0, 0)) = 1
4 c(u, v) + O(h)

on the interior of the borders (eg, u = 0 and v ∈ (0, 1))

E(ĉh(0, v)) = 1
2 c(u, v) + O(h)

and in the interior ((u, v) ∈ (0, 1) × (0, 1))

E(ĉh(u, v)) = c(u, v) + O(h2)

The bias can be observed in Figure 2.5, which represents the diago-
nal of the estimated density for several samples.

Several techniques have been introduced to obtain a better esti-
mation on the borders for univariate densities:

• mirror image modification (Schuster (1985); Deheuvels and
Hominal (1979)), where artificial data are obtained, using sym-
metric (mirror) transformations on the borders;

• transformed kernels (Devroye and Györfi (1985); Wand et al
(1991)), where the idea is to transform the data Xi using a

12
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

bijective mapping φ so that the φ(Xi) have support R. Efficient
kernel-based estimation of the density of the φ(Xi) can be
derived, and, by the inverse transformation, we get back the
density estimation of the Xi themselves;

• boundary kernels (Gasser and Müller (1979); Rice (1984);
Müller (1991)), where a smooth distortion is considered near
the border, so that the bandwidth and the kernel shape can be
modified (the closer to the border, the smaller).

Finally, the last section will briefly mention the impact of pseudo-
observations, ie, working on samples

{(FX,T(X1), FY,T(Y1)), . . . , (FX,T(XT), FY,T(YT))}
instead of

{(FX(X1), FY(Y1)), . . . , (FX(XT), FY(YT))}
as if we know the true marginal distributions.

Mirror image
The idea of this method, developed by Deheuvels and Hominal
(1979) and Schuster (1985), is to add some “missing mass” by
reflecting the sample with respect to the boundaries. They focus on
the case where variables are positive, ie, whose support is [0, ∞).
Formally and in its simplest form, it means replacing Kh(x − Xi) by
Kh(x − Xi) + Kh(x + Xi). The estimator of the density is then

f̂h(x) =
1

Th

T

∑
i=1

{
K

(
x − Xi

h

)
+ K

(
x + Xi

h

)}

In the case of densities whose support is [0, 1] × [0, 1], the non-
consistency can be corrected on the boundaries, but the conver-
gence rate of the bias will remain O(h) on the boundaries, which
is larger than the usual rate O(h2) obtained in the interior if h → 0.
The only case where the usual rate of convergence is obtained on
boundaries is when the derivative of the density is zero on such
subsets. Note that the variance is 4 times higher in corners and 2
times higher in the interior of borders.

For copulas, instead of using only the “pseudo-observations”
(Ûi, V̂i) ≡ (FX,T(Xi), FY,T(Yi)), the mirror image consists in reflect-
ing each data point with respect to all edges and corners of the

13
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COPULAS

Figure 2.6 Estimation of the copula density using a Gaussian kernel
and the mirror reflection principle with 1,000 observations from the
Frank copula.
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unit square [0, 1] × [0, 1]. Hence, additional observations can be
considered; ie, the (±Ûi, ±V̂i), the (±Ûi, 2 − V̂i), the (2 − Ûi, ±V̂i)
and the (2 − Ûi, 2 − V̂i), so that one can consider

ĉh(u, v)

=
1

Th2

T

∑
i=1

{
K

(
u − Ûi

h

)
K

(
v − V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v − V̂i

h

)

+ K
(

u − Ûi
h

)
K

(
v + V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v + V̂i

h

)

+ K
(

u − Ûi
h

)
K

(
v − 2 + V̂i

h

)
+ K

(
u + Ûi

h

)
K

(
v − 2 + V̂i

h

)

+ K
(

u − 2 + Ûi
h

)
K

(
v − V̂i

h

)
+ K

(
u − 2 + Ûi

h

)
K

(
v + V̂i

h

)

+ K
(

u − 2 + Ûi
h

)
K

(
v − 2 + V̂i

h

)}

Figure 2.6 has been obtained using the reflection principle.
We can check that the fit is far better than in Figure 2.3.

Transformed kernels
Recall that c is the density of (U, V), U = FX(X) and V = FY(Y).
The two latter random variables (RVs) follow uniform distributions

14
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

(marginally). Consider a distribution function G of a continuous
distribution on R, with differentiable strictly positive density g. We
build new RVs X̃ = G−1(U) and Ỹ = G−1(V). Then, the density of
(X̃, Ỹ) is

f (x, y) = g(x)g(y)c[G(x), G(y)] (2.2)

This density is twice continuously differentiable on R2, and the
standard kernel approach applies.

Since we do not observe a sample of (U, V) but instead make
pseudo-observations (Ûi, V̂i), we build an “approximated sample”
of the transformed variables (X̃1, Ỹ1), . . . , (X̃T , ỸT) by setting X̃i =
G−1(Ûi) and Ỹi = G−1(V̂i). Thus, the kernel estimator of f is

f̂ (x, y) =
1

Th2

T

∑
i=1

K
(

x − X̃i
h

,
y − Ỹi

h

)
(2.3)

The associated estimator of c is then deduced by inverting (2.2),

c(u, v) =
f (G−1(u), G−1(v))

g(G−1(u))g(G−1(v))
, (u, v) ∈ [0, 1] × [0, 1]

and therefore we get

ĉh(u, v) =
1

Th2g(G−1(u)) · g(G−1(v))

×
T

∑
i=1

K
(

G−1(u) − G−1(Ûi)
h

,
G−1(v) − G−1(V̂i)

h

)

Note that this approach can be extended by considering different
transformations GX and GY, different kernels KX and KY, or differ-
ent bandwidths hX and hY, for the two marginal random variables.

Figure 2.7 was obtained using the transformed kernel, where
K was a Gaussian kernel and G was respectively the CDF of the
N (0, 1) distribution.

The absence of a multiplicative bias on the borders can be
observed in Figure 2.8, where the diagonal of the copula density
is plotted, based on several samples. The copula density estimator
obtained with transformed samples has no bias, is asymptotically
normal, etc. Actually, we get all the usual properties of the multi-
variate kernel density estimators.

15
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COPULAS

Figure 2.7 Estimation of the copula density using a Gaussian kernel
and Gaussian transformations with 1,000 observations drawn from
the Frank copula.
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Figure 2.8 Estimation of the copula density on the diagonal using
a Gaussian kernel and Gaussian transformations with (a) 100 and
(b) 1,0000 observations drawn from a Frank copula.
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Beta kernels
In this section we examine the use of the beta kernel introduced by
Brown and Chen (1999), and Chen (1999, 2000) for nonparametric
estimation of regression curves and univariate densities with com-
pact support, respectively.

Following an idea by Harrell and Davis (1982), Chen (1999,
2000) introduced the beta kernel estimator as an estimator of a
density function with known compact support [0, 1], to remove the
boundary bias of the standard kernel estimator:

f̂h(x) =
1
T

T

∑
i=1

K
(

Xi,
x
h

+ 1,
1 − x

h
+ 1

)

where K(·, α, β) denotes the density of the beta distribution with
parameters α and β,

K(x, α, β) =
xα(1 − x)β

B(α, β)
, x ∈ [0, 1]

where

B(α, β) =
Γ(α + β)
Γ(α)Γ(β)

The main difficulty when working with this estimator is the lack of
a simple “rule of thumb” for choosing the smoothing parameter h.

The beta kernel has two leading advantages. First it can match
the compact support of the object to be estimated. Secondly it has a
flexible form and changes the smoothness in a natural way as we
move away from the boundaries. As a consequence, beta kernel
estimators are naturally free of boundary bias and can produce
estimates with a smaller variance. Indeed we can benefit from a
larger effective sample size since we can pool more data. Monte
Carlo results available in these papers show that they have better
performance compared to other estimators which are free of bound-
ary bias, such as local linear (Jones (1993)) or boundary kernel
(Müller (1991)) estimators. Renault and Scaillet (2004) also report
better performance compared to transformation kernel estimators
(Silverman (1986)). In addition, Bouezmarni and Rolin (2001, 2003)
show that the beta kernel density estimator is consistent even
if the true density is unbounded at the boundaries. This feature
may also arise in our situation. For example the density of a

17
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COPULAS

bivariate Gaussian copula is unbounded at the corners (0, 0) and
(1, 1). Therefore beta kernels are appropriate candidates to build
well-behaved nonparametric estimators of the density of a copula
function.

The beta-kernel based estimator of the copula density at point
(u, v) is obtained using product beta kernels, which yields

ĉh(u, v) =
1

Th2

T

∑
i=1

K
(

Xi,
u
h

+ 1,
1 − u

h
+ 1

)

× K
(

Yi,
v
h

+ 1,
1 − v

h
+ 1

)

Figure 2.9 shows that the shape of the product beta kernels for
different values of u and v is clearly adaptive.

For convenience, the bandwidths are here assumed to be equal,
but, more generally, one can consider one bandwidth per compo-
nent. See Figure 2.10 for an example of an estimation based on beta
kernels and a bandwidth h = 0.05.

Let (u, v) ∈ [0, 1] × [0, 1]. The bias of ĉ(u, v) is of the order of h,
ĉh(u, v) = c(u, v) + O(h). The absence of a multiplicative bias on the
boundaries can be observed on Figure 2.11, where the diagonal of
the copula density is plotted, based on several samples.

On the other hand, note that the variance depends on the loca-
tion. More precisely, Var(ĉh(u, v)) is O((Thκ)−1), where κ = 2 in
corners, κ = 3/2 in borders, and κ = 1 in the interior of [0, 1] ×
[0, 1]. Moreover, as well as “standard” kernel estimates, ĉh(u, v) is
asymptotically normally distributed:√

Thκ′ [ĉh(u, v) − c(u, v)] L−→ N (0, σ(u, v)2)

as Thκ′ → ∞ and h → 0

where κ′ depends on the location, and where σ(u, v)2 is propor-
tional to c(u, v).

Working with pseudo-observations
As we know, most of the time the marginal distributions of random
vectors are unknown, as recalled in the first section. Hence, the
associated copula density should be estimated not on samples
(FX(Xi), FY(Yi)) but on pseudo-samples (FX,T(Xi), FY,T(Yi)).

18
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Figure 2.9 Shape of bivariate beta kernels for different values of u
and v. (a) u = 0.0, v = 0.0; (b) u = 0.2, v = 0.0; (c) u = 0.5, v = 0.0;
(d) u = 0.0, v = 0.2; (e) u = 0.2, v = 0.2; (f) u = 0.5, v = 0.2; (g) u =
0.0, v = 0.5; (h) u = 0.2, v = 0.5; (i) u = 0.5, v = 0.5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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COPULAS

Figure 2.10 Estimation of the copula density using beta kernels (u =
0.05) with 1,000 observations drawn from a Frank copula.
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Figure 2.11 Estimation of the copula density on the diagonal using
beta kernels with (a) 100 and (b) 1,000 observations drawn from a
Frank copula.
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Figure 2.12 shows some scatterplots when the margins are
known (ie, we know (FX(Xi), FY(Yi))), and when margins are esti-
mated (ie, (FX,T(Xi), FY,T(Yi)). Note that the pseudo-sample is more
“uniform”, in the sense of a lower discrepancy (as in quasi Monte
Carlo techniques; eg, see Niederreiter (1992)). Here, by mapping
every point of the sample on the marginal axis, we get uniform
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Figure 2.12 Scatterplots of observations and pseudo-observations
and histograms of margins. (a) 100 observations (Xi, Yi) drawn
from a Frank copula and (b) associated pseudo-sample (Ui, Vi) =
(F̂X(Xi), F̂Y(Yi)).
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grids, which is a type of “Latin hypercube” property (eg, see Jäckel
(2002)).

Because samples are more “uniform” using ranks and pseudo-
observations, the variance of the estimator of the density, at some
given point (u, v) ∈ (0, 1) × (0, 1), is usually smaller. For instance,
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Figure 2.13 The impact of estimating from pseudo-observations
(n = 100). The dashed line is the distribution of ĉ(u, v) from sam-
ple (FX(Xi), FY(Yi)), and the solid line is from pseudo-sample
(FX,T(Xi), FY,T(Yi)).
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Figure 2.13 shows the impact of considering pseudo-observations,
ie, substituting FX,T and FY,T into unknown marginal distributions
FX and FY. The dashed line shows the density of ĉ(u, v) from 100
observations (Ui, Vi) (drawn from the same Frank copula), and the
solid line shows the density of ĉ(u, v) from the sample of pseudo-
observations (ie, the ranks of the observations).

A heuristic interpretation can be obtained from Figure 2.12.
Consider the standard kernel-based estimator of the density, with
a rectangular kernel. Consider a point (u, v) in the interior, and a
bandwidth h such that the square [u − h, u + h] × [v − h, v + h] lies
in the interior of the unit square. Given a T sample, an estimation
of the density at point (u, v) involves the number of points located
in the small square around (u, v). Such a number will be denoted
by N, and it is a random variable. Larger N provides more precise
estimations.
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THE ESTIMATION OF COPULAS: THEORY AND PRACTICE

Assume that the margins are known, or equivalently, let
(U1, V1), . . . , (UT, VT) denote a sample with distribution func-
tion C. The number of points in the small square, say N1, is random
and follows a binomial law with size T and some parameter p1.
Thus, we have N1 ∼ B(T, p1) with

p1 = P((U, V) ∈ [u − h, u + h] × [v − h, v + h])

= C(u + h, v + h) + C(u − h, v − h)

− C(u − h, v + h) − C(u + h, v − h)

and therefore
Var(N1) = Tp1(1 − p1)

On the other hand, assume that margins are unknown, or equiv-
alently that we are dealing with a sample of pseudo-observations
(Û1, V̂1), . . . , (ÛT, V̂T). By construction of pseudo-observations, we
have

#{Ûi ∈ [u − h, u + h]} = �2hT�
where �·� denotes the integer part. As previously, the number of
points in the small square N2 satisfies N2 ∼ B(�2hT�, p2) where

p2 = P((Û, V̂) ∈ [u − h, u + h] × [v − h, v + h] | Û ∈ [u − h, u + h])

=
P((Û, V̂) ∈ [u − h, u + h] × [v − h, v + h])

P(Û ∈ [u − h, u + h])

≈ {
C(u + h, v + h) + C(u − h, v − h)

− C(u − h, v + h) − C(u + h, v − h)
}

/2h

=
p1

2h

Therefore the expected number of observations is the same for both
methods (E[N1] � E[N2] � Tp1), but

Var(N2) ≈ 2hTp2(1 − p2) = 2hT
p1

2h
(1 − p1

2h
) =

T
2h

p1(2h − p1)

Thus
Var(N2)
Var(N1)

=
Tp1(2h − p1)

2hTp1(1 − p1)
=

2h − p1

2h − 2hp1
≤ 1

since h ≤ 1/2 and thus 2hp1 ≤ p1.
So finally, the variance of the number of observations in the

small square around (u, v) is larger than the variance of the num-
ber of pseudo-observations in the same square. Therefore, this
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COPULAS

larger uncertainty concerning the relevant sub-sample used in the
neighbourhood of (u, v) in the former case implies a loss of effi-
ciency. The consequence of this result is largely counterintuitive.
By working with pseudo-observations instead of “true” ones, we
would expect an additional noise, which should induce more noisy
estimated copula densities. This is not in fact the case as we have
just shown.

CONCLUDING REMARKS
We have discussed how various estimation procedures impact the
estimation of tail probabilities in a copula framework. Parametric
estimation may lead to severe underestimation when the paramet-
ric model of the margins and/or the copula is misspecified. Non-
parametric estimation may also lead to severe underestimation
when the smoothing method does not take into account potential
boundary biases in the corner of the density support. Since the
primary focus of most risk management procedures is to gauge
these tail probabilities, we think that the methods analysed above
might help to better understand the occurrence of extreme risks in
stand-alone positions (single asset) or inside a portfolio (multiple
assets). In particular we have shown that nonparametric methods
are simple, powerful visualisation tools that enable the detection
of dependencies among various risks. A clear assessment of these
dependencies should help in the design of better risk measurement
tools within a VAR or an expected shortfall framework.

1 The third author acknowledges financial support by the National Centre of Competence in
Research “Financial Valuation and Risk Management” (NCCR FINRISK).

2 For example, the number of histogram grid cells increases exponentially. This effect cannot
be avoided, even using other estimation methods. Under smoothness assumptions on
the density, the amount of training data required for nonparametric estimators increases
exponentially with the dimension (eg, see Stone (1980)).
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