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ABSTRACT
The ever-increasing popularity of mobile applications cou-
pled with the prevalence of spatial data has created the need
for efficient processing of spatial queries in mobile environ-
ments. While different types of spatial queries (e.g., spa-
tial select queries, spatial join queries and nearest neighbour
queries) need to be addressed in mobile environments, this
work specifically addresses the processing of spatial select
queries (i.e., window queries) on any k relations among N
spatial relations. We designate such window queries on any
k relations among N spatial relations as kNW queries. No-
tably, the processing of kNW queries is much more challeng-
ing in mobile environments than in traditional environments
primarily due to the mobility of the clients which issue the
queries to the respective base stations. The main contribu-
tion of this work is the proposal of the kNR-tree, a single
integrated novel R-tree-based structure for indexing objects
from N different spatial relations. Notably, the kNR-tree
facilitates efficient processing of kNW queries. Our per-
formance evaluation demonstrates that our proposed tech-
nique, which is based on the kNR-tree, is indeed effective
in reducing the response times of kNW queries in mobile
environments.

1. INTRODUCTION
The ever-increasing popularity of mobile applications cou-
pled with the prevalence of spatial data has created the need
for efficient processing of different types of spatial queries
(e.g., spatial select queries, spatial join queries and nearest
neighbour queries) in mobile environments. Such mobile en-
vironments typically comprise a set of base stations, each of
which is responsible for storing and managing the data of
mutually disjoint spatial regions, and mobile clients that is-
sue queries to the base stations within their communication
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range. This work focusses on the processing of spatial select
queries (i.e., window queries) on any k relations among N
spatial relations in mobile environments. We designate such
window queries on any k relations among N spatial relations
as kNW queries.

The reason for addressing kNW queries instead of just con-
sidering window queries on a single relation is that in prac-
tice, a single client may be interested in objects from a
number of different relations and different clients may be
interested in different numbers as well as different kinds of
relations. This is more so in case of mobile environments
where there are likely to be multiple relations and the de-
mographics of the client population may vary considerably.
For example, a particular mobile client X may wish to is-
sue the following query: Find all bookshops, restaurants and
car-parks which I will encounter nearby me during my next
10 minutes of travelling. Another mobile client Y may is-
sue the following query: Find all bus stations and shopping
centres which I will encounter nearby me during my next
15 minutes of travelling. Notably, during the time interval
between the time of issuing the query and the time of the
client receiving the results, since the client is continuously
moving, there may be some objects of interest to the client
nearby him, but the client would only know about these
objects after receiving the query results by which time the
client may have already moved past these objects. Hence, to
ensure the usefulness of the results to the client, reduction
of query response time is of paramount importance.

Our work differs from existing works in two major ways.
First, since we do not have a priori knowledge of the mobile
client’s position when the query results would be ready, the
window of the query is speculative (not known in advance)
i.e., the processing done by some of the base stations may not
contribute to the final results that are returned to the client.
Second, while existing works investigate issues concerning a
single spatial relation, we examine issues concerning objects
from N different spatial relations.

The main contribution of this work is the proposal of the
kNR-tree, a single integrated novel R-tree-based structure
for indexing objects from N different spatial relations. No-
tably, the kNR-tree facilitates efficient processing of kNW



queries. Our performance evaluation demonstrates that our
proposed technique, which is based on the kNR-tree, is in-
deed effective in reducing the response times of kNW queries
in mobile environments. The remainder of this paper is or-
ganized as follows. Section 2 presents an overview of the
problem, while Section 3 discusses the processing of kNW
queries in mobile environments. The kNR-tree index struc-
ture is proposed in Section 4. Section 5 reports the perfor-
mance evaluation and Section 6 discusses relevant existing
works. Finally, we conclude in Section 7 with directions for
future work.

2. PROBLEM FORMULATION
This section discusses the formulation of the problem. The
problem statement is as follows: Given a set of base stations,
each of which stores and manages the data (from N spatial
relations) of mutually disjoint spatial regions and a set of
mobile clients, the mobile client wishes to find the results of
spatial window queries (on any k of the N relations) nearby
himself within the duration of the next T time units.

In our proposed system, the universe is divided into a set
of mutually disjoint rectangular spatial regions, the data of
each spatial region being stored and managed by only one
particular base station. We define a region R as being within
the domain of a base station BR if BR is responsible for stor-
ing and managing the data associated with R. Figure 1 de-
picts an illustrative example of how the universe is statically
divided into four rectangular spatial regions. In Figure 1,
suppose regions 1, 2, 3, 4 are within the domains of base sta-
tions B1, B2, B3, B4 respectively. Moreover, we assume that
a mobile client M currently in region R can communicate
only with the base station BR within whose domain R is in
i.e., all other base stations are outside the communication
range of M . For example, in Figure 1, M issues a query
from point PIssue (in B1’s domain), so M has to issue the
query to B1.

All the base stations can communicate among themselves.
We define two base stations as neighbours if their round-trip
communication time is less than a pre-defined threshold. We
assume that each base station has an index for tracking mo-
bile objects within its domain. Any existing index structure
for mobile indexing [7, 6, 5, 9] can be used for this purpose.

We assume that all objects are points in space. In particu-
lar, note that the objects are static, but the clients who issue
queries to the objects are mobile. The spatial relations are
numbered as 1 to N . Each object is of the form (OID, Loc,
Obitmap) where OID represents the unique identifier associ-
ated with the object. OID is generated by concatenating the
base station’s identifier with a unique integer generated by
the base station within whose domain the object is located.
Loc specifies the coordinates where the object is located,
while Obitmap is the object bitmap which is an array of N
bits, each entry position of which corresponds to a specific
spatial relation i.e., position 1 of Obitmap relates to relation
1, position 2 is associated with relation 2 and so on. For
each relation associated with the object, the corresponding
entry in the bitmap is marked as ‘1’, all other entries being
‘0’. Note that we number bitmap positions starting from 1
(not from 0).

For practical reasons, we allow an object to belong to mul-
tiple relations e.g., a bookshop that has a cafeteria would
belong to both relations, Bookshop and Cafeteria. Interest-
ingly, even though we view the problem as that of indexing
N different spatial relations, an alternative perspective of
this problem could be to view the problem as that of index-
ing only one spatial relation with the type of the object as
a scalar attribute of the space.
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Figure 1: Problem description

Client queries are of the form (queryID, clientID, PIssue,
SpeedMax, Qbitmap, δ, τ ) where queryID is the unique iden-
tifier for a query, clientID is the unique identifier of the
client M , PIssue is the point (location) from which the query
was issued, and SpeedMax specifies M ’s maximum speed.
Qbitmap is the query bitmap (an array of N bits), whose
structure is exactly the same in terms of entry positions of
relations as that of the object bitmap. Entries in Qbitmap

corresponding to query-related relations are marked as ‘1’,
the others being marked as ‘0’. δ quantifies the distance
from M ’s current location which M considers to be ‘nearby’
himself. Understandably, the notion of ‘nearby’ can vary
significantly between mobile clients. τ indicates the dura-
tion of time (after issuing the query) during which the client
would wish to receive the query results.

3. WINDOW QUERY PROCESSING IN MO-
BILE ENVIRONMENTS

We define Qcircle as a circle drawn with PIssue as centre
and ( τ×SpeedMax + δ) as radius. Let us refer to the MBR
of Qcircle as QMBR. An illustrative example of Qcircle and
QMBR is shown in Figure 1. Qcircle encompasses the en-
tire spatial region that can possibly be associated with the
client’s query, thereby implying that QMBR should be speci-
fied as the window query for the client’s next τ time units of
travelling. However, given that the client may not be travel-
ling at his maximum speed in all directions at once, QMBR

is a speculative and conservative estimate of the query win-
dow, thereby indicating that some of the processing done by
the base stations would be unnecessary.

Intuitively, it is possible for QMBR to intersect with the
domains of base stations other than the base station from
whose domain the query had been issued. For example,
Figure 1 indicates that QMBR intersects with the domains of
both B1 and B3, even though the query had been issued from



within B1’s domain. Hence, given that a mobile client M
issues a query to a base station Bi within its communication
range, we have the following two cases:

1. QMBR falls completely within Bi’s domain: Bi pro-
cesses QMBR on its own and sends results to M . We
defer the discussion concerning how QMBR is processed
by an individual base station to Section 4.

2. QMBR intersects with the domain of at least one base
station other than Bi: Bi determines the set R of
base stations with whose domains QMBR intersects.
For each member r of R, Bi determines the inter-
secting rectangular part between QMBR and r’s do-
main, and sends the intersecting rectangular part to
each r. Let us refer to such intersecting rectangular
parts as subQMBRs. After processing its respective
subQMBR, each r sends a COMPLETE message to in-
dicate that it has completed processing its subQMBR.
Incidentally, during the time interval between the time
that the query was issued and the time of Bi receiving
the COMPLETE message from each r, M may have
moved into the domain of any one of the members of R.
Hence, Bi sends a message to each r enquiring whose
domain M is currently in. Each r checks its index
for tracking mobile objects to determine whether M
is currently in its domain and the member rcurrent of
R which determines that M is currently in its domain
sends a message to Bi. Bi sends a message to each
r asking them to send their results to rcurrent. Now
rcurrent receives all the results from every r, checks the
time t that has elapsed since the query was issued and
computes a circle using the client’s current location
as the centre and ((τ -t) × SpeedMax + δ) as radius.
Then rcurrent runs the MBR of this circle as a spatial
select condition on the results to obtain the result set,
which is returned to the client.

4. KNR-TREE: A SINGLE INTEGRATED IN-
DEX FOR OBJECTS FROM N DIFFER-
ENT SPATIAL RELATIONS

This section presents the kNR-tree, a single integrated R-
tree-based structure for indexing objects from N spatial re-
lations.

Non-leaf nodes of the kNR-tree contain entries of the form
(ptr, mbr, Nbitmap) where ptr is a pointer to a child node
in the kNR-tree and mbr is the MBR that covers all the
MBRs in the child node. Nbitmap consists of array of N entry
bits, each of which corresponds to a specific spatial relation.
Notably, the structure of Nbitmap is exactly the same as
that of the object bitmaps and the query bitmaps in terms
of the entry positions of the spatial relations. If the node
contains at least one object from a particular relation, the
corresponding entry in its Nbitmap is marked as ‘1’, otherwise
it is marked as ‘0’. Leaf nodes of the kNR-tree contain
entries of the form (oid, loc, Nbitmap), where oid is a pointer
to an object in the database and loc is the location of the
object. The structure of Nbitmap for the leaf nodes of the
kNR-tree is essentially the same as that of the structure of
Nbitmap for the non-leaf nodes.

Creation of the kNR-tree uses the R-tree insertion algorithm
[4], the only difference being that whenever an object to
be inserted traverses down the kNR-tree, an OR operation
should be executed between the object’s bitmap and the ex-
isting bitmap at the nodes which fall in the path of the ob-
ject’s top-down kNR-tree traversal. Insertion and deletion
algorithms for the kNR-tree also follow standard R-tree al-
gorithms with the handling of node bitmaps being the only
difference. Notably, while insertion of objects into the kNR-
tree can be expected to be fairly efficient, we can expect
deletion of objects to be expensive, especially in cases where
updates to the node bitmaps need to be propagated all the
way upto the root node of the kNR-tree. We intend to in-
vestigate efficient deletion of objects from the kNR-tree in
the near future. Moreover, observe that the kNR-tree is not
dynamic in the sense that if a new relation is added to the
universe, the index needs to be rebuilt. We leave the issue of
incorporating dynamism in the kNR-tree to further study.

Figure 2 depicts an illustrative example of the kNR-tree. In
Figure 2, the universe is divided into three rectangular spa-
tial regions A, B and C. As depicted in the figure, H , P , J
and S stand for hotel, presentation room, jacuzzi and shop-
ping centre respectively. The root node’s bitmap H ,P ,J ,S
= (0,1,1,1) indicates that the universe comprising A,B and
C contains a presentation room, a jacuzzi and a shopping
centre, but not a hotel. For the sake of convenience, we
have used this notation throughout this figure. A is further
divided into three rectangular spatial regions D, E and F
respectively. The figure indicates that the region covered
by D, E and F also contains a presentation room, a jacuzzi
and a shopping centre without having any hotel. D is fur-
ther divided into three rectangular spatial regions O, Q and
R. The figure displays that the region encompassed by O,
Q and R contains a presentation room and a jacuzzi, but
neither a hotel nor a shopping centre. Similarly, B and C
are further divided into G, I , K and L, M , N respectively.

...

A B C 0  1 11

D E F 0 1 1 1 G I K ML N0 0 0 1 0 0 0 1

0 1 1 0 0 1 1 1 10 00O Q R T U V W X Y

HP J S H: Hotel
P: Presentation Room

S: Shopping Centre
J: Jacuzzi

... ... ... ... ...

Figure 2: Illustrative example for the kNR-tree

kNW Query Processing using the kNR-tree
Our strategy for processing kNW queries using the kNR-
tree comprises a top-down traversal involving only those
nodes whose MBRs intersect with the query window such



Algorithm Spatial Window ( R, W , Qbitmap )
Inputs: 1) A kNR-tree whose root node is R.

2) A query window W
3) Qbitmap, the query bitmap

Output: Results of the kNW query
if R is not a leaf node

if R satisfies Qbitmap

Find each MBR entry M of R intersecting W
for each M

execute Spatial Window ( Childptr, W , Qbitmap )
/* Childptr is the pointer to M ’s child node */

else
if R satisfies Qbitmap

Find a list L of MBR entries of R that intersect W
for each MBR entry M in L

Check each object within M
Add each object satisfying Qbitmap to the result set

end

Figure 3: kNW query processing algorithm for the
kNR-tree

that the bitmap of every node, which falls in the path of the
top-down kNR-tree traversal, is checked against the query
bitmap to decide whether to go further down the branches
emanating from the node. The result set consists of k linked
lists, each linked list storing the objects retrieved for one of
the k relations. Whenever any object is retrieved, the al-
gorithm first determines which relation(s) it belongs to and
then adds the object to the linked list(s) associated with
the object. The implication is that if an object belongs to
multiple relations, it will appear in the linked lists of all the
relations that it belongs to. The kNW query processing
algorithm for the kNR-tree is presented in Figure 3. In Fig-
ure 3, we define a node as satisfying a query bitmap if the
node contains at least one of the k relations associated with
the query.

5. PERFORMANCE STUDY
This section reports the performance evaluation of our pro-
posed techniques. The machine used for the experiments
had processing capacity of 1.7 GHz (Pentium-4), main mem-
ory of 768 Mbytes and disk space of 40GB. We ran the ex-
periments under the Redhat Linux (version 7.3) operating
system. Due to space constraints, in this paper, we show
the performance of the kNR-tree at only one base station,
even though we have conducted experiments using 16 base
stations (each of which indexed the objects in its domain
using the kNR-tree).

We conducted our experiments using different real-life datasets.
In the interest of space, here we present only the results of
our experiments that were performed using a specific real-
life dataset ‘Greece Roads’[3]. The ‘Greece Roads’ dataset
contains 23268 rectangles representing the data of roads in
Greece. First, we computed the centroid of these rectangles
to obtain a dataset of 23268 points before enlarging this
dataset by translating and mapping the data. The base sta-
tion used for this experiment had more than 200000 points
(objects), each point being associated with at least one spa-
tial relation from the set of 20 relations used for our exper-
iments. We assumed that one kNR-tree node fits in a disk

page (page size = 4096 bytes). Hence, kNR-tree node capac-
ity is the same as page size in our case. We used a fan-out
of 64 for the kNR-tree.

We define the size of a query QSIZE as the percentage of
the area of the base station’s domain that a query covers.
For example, QSIZE = 20 implies that the query covers 20%
of the area associated with the base station’s domain. The
interarrival time between queries was fixed at 5 seconds.

We numbered the relations as 1 to N . Each object was as-
sociated with at most 3 relations. For deciding the number
of relations associated with a particular object, we gener-
ated a random number q between 1 and 3 so that the object
belongs to q relations. Then we generate q distinct random
numbers between 1 and N and assign the object to the q
relations whose relation numbers match with these gener-
ated numbers. For generating queries, we see the value of k
in a particular query Q and associate k relations with Q by
choosing k distinct random numbers between 1 and N . Then
we select a point randomly in the domain of the base station
under consideration and draw a rectangle of area QSIZE us-
ing the point as the centroid of the rectangle. This rectangle
is our query window.

Performance of the kNR-tree
To understand the performance of the kNR-tree, let us now
focus on a kNR-tree at a specific base station. Notably, dif-
ferent values of SpeedMax and τ result in window queries
of different sizes (areas). In our experiments, variations
in SpeedMax and τ are modeled by varying the respective
query window sizes characterized by QSIZE. Moreover, for
this set of experiments, the query windows were selected
such that they completely overlap with the domain of the
base station under consideration. As reference, we adopt a
traditional approach which uses N different R-trees to in-
dex N relations i.e., one R-tree for each relation. Let us
designate it as the ‘N R-trees’ approach.

Figure 4 shows the effect of variations in QSIZE when k
is fixed. Figures 4a and 4b presents the results concerning
query response time T and total number of disk I/Os in-
curred for k=5. When QSIZE increases, more branches of
the index structures need to be traversed, thus explaining
the reason for higher number of disk I/Os and consequently
higher query response times for increasing values of QSIZE.
While the kNR-tree requires only one traversal from its root
node to its leaf nodes, the ‘N R-trees’ approach needs to
make one traversal from the root node to the leaf nodes for
each of the R-trees corresponding to the queried relations,
thereby incurring significantly higher number of disk I/Os
(shown in Figure 4b) and hence much higher response times
(depicted in Figure 4a) than the kNR-tree. Moreover, if an
object satisfies q relations, it would be retrieved only once
in case of the kNR-tree, while it would be retrieved q times
from q different R-trees in case of the ‘N R-trees’ approach.

Figure 5 depicts the effect of variations in k when QSIZE is
fixed. Figures 5a and 5b show the query response times T
and disk I/Os for QSIZE=20. As k increases, kNR-tree’s
performance gain over the ‘N R-trees’ approach also in-
creases due to lower number of disk accesses incurred by
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the kNR-tree as discussed above. Interestingly, the results
in Figure 5a indicate that the kNR-tree performs slightly
worse than the ‘N R-trees’ approach when k=1. A detailed
examination of the experimental results log revealed that
this may be attributed to two reasons. First, the height
of the kNR-tree can be expected to be larger than at least
some of the individual R-trees in the ‘N R-trees’ approach.
Second, unlike the ‘N R-trees’ approach, the kNR-tree needs
processing time to handle the bitmaps of its nodes during
the traversal.

6. RELATED WORK
Traditional R-tree-based indexes such as the R-tree [4], the
R+-tree [2] and the R*-tree [8] are not adequate for index-
ing mobile objects because such indexing entails frequent
updates causing a large number of node-splits and/or node-
merges. Hence, several R-tree-based structures such as the
Spatio-Temporal R-tree (STR-tree) and Trajectory-Bundle

tree (TB-tree) [6], the time-parameterized R-tree (TPR-
tree) [7], Lazy Update R-tree (LUR-tree) [5], and the Multi-
version 3D R-tree(MV3R-tree) [9] have been proposed specif-
ically for indexing moving objects. A good survey on spatio-
temporal databases can be found in [1].

7. CONCLUSION
The increasing popularity of mobile applications coupled
with the prevalence of spatial data has created the need
for efficient processing of spatial queries in mobile environ-
ments. In this paper, we have addressed the processing of
spatial select (window) queries on any k relations among N
spatial relations. Our solution involves the use of our pro-
posed kNR-tree. Our performance evaluation has demon-
strated the effectiveness of our proposed kNR-tree-based
technique in reducing the response times of kNW queries in
mobile environments. In the near future, we intend to make
more detailed performance comparisons between our pro-
posed kNR-tree-based technique and relevant existing tech-
niques and also we wish to examine the effect of the spatial
density of the dataset on our proposed technique. Moreover,
we aim at investigating effective load-balancing among the
base stations.
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