DALTON'S LAW OF PARTIAL PRESSURES

Name _____

Dalton's Law says that the sum of the individual pressures of all the gases that make up a mixture is equal to the total pressure or : $P_1 = P_1 + P_2 + P_3 + \dots$ The partial pressure of each gas is equal to the mole fraction of each gas x total pressure.

$$P_T = P_1 + P_2 + P_3 + \dots$$
 or $\frac{\text{moles gas}_x}{\text{total moles}} \times P_T = P_x$

Solve the following problems.

- A 250. mL sample of oxygen is collected over water at 25° C and 760.0 torr pressure. What is the pressure of the dry gas alone? (Vapor pressure of water at 25° C = 23.8 torr)
- 2. A 32.0 mL sample of hydrogen is collected over water at $2\bar{0}^\circ$ C and 750.0 torr pressure. What is the volume of the dry gas at STP? (Vapor pressure of water at $2\bar{0}^\circ$ C = 17.5 torr)
- A 54.0 mL sample of oxygen is collected over water at 23° C and 770.0 torr pressure.
 What is the volume of the dry gas at STP? (Vapor pressure of water at 23° C = 21.1 torr)
- 4. A mixture of 2.00 moles of H_2 , 3.00 moles of NH_3 , 4.00 moles of CO_2 and 5.00 moles of N_2 exerts a total pressure of $80\overline{0}$ torr. What is the partial pressure of each gas?
- 5. The partial pressure of F_2 in a mixture of gases where the total pressure is 1.00 atm is 300. torr. What is the mole fraction of F_2 ?