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 FRACTALS, FUNCTIONS, and FEEDBACK SYSTEMS

Summary: This article describes an investigation into fractals, the methods of creating
them, as well as some mathematical considerations about their nature. This investigation
led to a further study of the complex functions used in creating fractals. The results and
observations employed relaxation factors in evaluating the numerical properties of the
calculations needed to generate solutions of the equations. These equations are used in
the generation of fractals. Some of the processes used in finding the roots of the investi-
gated functions are also discussed. A comparison with feedback systems is also intro-
duced.

1. The Mandelbrot Set

The notion �fractal� was coined by Mandelbrot and is derived from  the Latin word fractus.
The corresponding Latin verb frangere means �to break�: to create irregular fragments. Many
well known shapes or curves exhibit the properties of fractals. This is especially true since
Mandelbrot reasons that these shapes or curves are of a different dimension than the
dimensions of the Euclidian space and may assume a fractional value. The dimensions of
fractals can be expressed as the division of the logarithms of two integer numbers and thus
fractals can indeed be viewed as fractional dimensions. This can be demonstrated  in lines,
where the original line is broken up and lines of a different dimension are inserted in the gap
that resulted from the braking up of the line. A similar construct can also be made for curves
that are broken up. More about that at the end of this chapter on the Mandelbrot set.
Fractals can also be viewed as geometrical objects that display similar appearances and
properties under a change of scale (for example magnification). The concept is helpful in
disciplines where order can be perceived as disorder. In the case of a river and its tributaries,
it appears that every tributary has its own tributaries and as a result a smaller portion of the
river has the same structure and organization as the whole river. The same is true for the
branching of trees and roots, the blood vessels, underground caves and grotto�s�s, the nerves
and bronchioles in the human body. Many studies in fractals are devoted to the patterns of
sea shores and ways to calculate its exact distances. The rise and fall of economic indices
also exhibits self-similar structures, as well as the behaviour of weather patterns.
I will first discuss the method of creating the Mandelbrot set and how to create this set. The
Mandelbrot set is the locus of points, C, for which the series:

 = (0,0)  (1)Z Z Cn n+ = +1
2 , Z0

is bounded by a circle of radius two, centered at the origin whilst Z and C are complex
numbers. A complex number is a number consisting of a real part and an imaginary part. Z
is represented by X + i*Y where i = .−1
 One of the fascinating things about the Mandelbrot set is the seeming contradiction in it. It
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Figure 1: Coordinate system for complex numbers

is said to be the most complex object in mathematics, perhaps the most complex object ever
seen.  At the same time, it is generated by an almost absurdly simple formula. In the
literature the function that is used in creating fractals is referred to as strange attractor,
although Mandelbrot himself states that there is nothing strange about it and the notion
attractor describes its behaviour sufficiently well. What now follows is the way this attractor
is used to generate fractals.
Multiply Zn by itself. Add C. The answer is the new value for Z: Zn+1. Repeat this until the
absolute value of Zn is greater than 2, or until a counter (the specified number of these
repetitions) expires. If the absolute value of Z ever exceeds 2, then it will very quickly head
off towards infinity; that means that the point is not in the Mandelbrot set. The Mandelbrot
set is thus the definition of all points C for which the values of do not diverge. If theZn+1

absolute value of Zn doesn't exceed 2 after a specified number of iterations, then we give up
and assume that the initial point is in the Mandelbrot set. The iterations also stop when the
difference between the absolute values of  and becomes smaller than a givenZn+1 Zn

accuracy. The choice of these values (number of iterations and the value of the accuracy)
will be discussed later. There are two possibilities for comparing those values. One can either
compare the absolute values  or compare the absolute values of the real and imaginary parts
of both complex numbers. The absolute value of a complex number is the distance of the
complex number X + i*Y to the origin of the XY-coordinate system and is expressed as

. See figure 1. If the difference between and becomes indeed smaller thanX Y2 2+ Zn+1 Zn

the specified accuracy, we assume both values to be the same and the equation (1) can be
written as the equation 

Z2 - Z + C = 0  (2)
In this method of successive sub-
stitution we use the equation

 to find solutionsZ Z Cn n+ = +1
2

for the equation Z2 - Z + C = 0.
The chance that we are able to
solve this equation by means of
the method of successive substitu-
tion is small and in most cases the
method will quickly diverge.
However, in certain areas of the
complex plane (the coordinate
system defined by the X- and Y-
axis that represent the real and
imaginary numbers) solutions will
be found or will turn out to be
undefined. The latter situation
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Figure 3: The black and gray pixels are part of Mandelbrot
set

Figure 2: Mandelbrot set (black pixels)

happens when the found values of Z start to oscillate and create a repetitive pattern or when
the found solutions show a chaotic behaviour without diverging outside the specified
boundary of the absolute value of  Z. A repetitive pattern may consist of series of 2 to 12
values and are often referred to as the periods of the oscillating cycle. This does not mean

though that solutions to the equa-
tion   Z2 - Z + C = 0 don�t exist.
For the moment we limit our ob-
servations to the method of suc-
cessive substitution. 

The pretty pictures of a fractal can
now be constructed in the follow-
ing way. Let C be the set of all
points that can be represented by
the pixels of a colour display
screen. Initialize Z to be a certain
value (the seed value) of i.e. 0 +
i*0. Assign this seed value to

and determine .Assign theZn Zn+1

newly calculated value  to andZn

compare its new value with the previous one. If this process diverges, say after 200
iterations, assign a colour to the pixel represented by the x- and y-value (the real and
imaginary value) of C. Assign a different colour too the pixel of C if the process diverges
after 180 iterations, another colour after 160 etc. until a series of iteration bands have been

assigned to the diverging C-values.
In case the difference between the
old and new value of is smallerZn

than the specified accuracy, a so-
lution is found and the pixel re-
mains black. This is also the case
if after the mentioned 200 itera-
tions  the process has not diverged
yet. These pixels can also be col-
oured black or a specific colour
can be assigned to these pixels. 
The points of the Mandelbrot set
are thus typically colored black.
The black, barnacle covered pear
is the Mandelbrot set proper. All
the bands of colour outside of it
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Figure 5: Values of C that don�t diverge

Figure 4: Magnification of part of the fractal in picture 2

are simply curious artifacts that help to expose the detail of the Mandelbrot set itself. The
result of this process is shown in figure 2. The coordinates of the left-bottom corner of the

picture are (-2.2 ,-1.6), those of
the right-top corner (1.1 ,1.6). The
X-coordinates of C increase from
left to right with a value equal to
the difference between the  coor-
dinates of the right and left border
divided by 640. In a similar way
the Y-coordinates increase from
bottom to top with a value that is
equal to the top minus the bottom
coordinate values divided by 480;
640 and 480 being the amount of
screen pixels that are addressed.
The limiting dimension of the
large black cusp is set on the value
2. This defines the boundary of
the Mandelbrot set. A solution to

equation (1) is found when the  difference between the real and imaginary parts of Zn+1 and
Zn is less than a set accuracy (here  0.0001). The iteration process stops after 200 iterations.
Changing the values of the coordinates that define the boundary of the picture, the value that
defines the boundary of the large cusp, the accuracy, or the maximum amount of iterations

may change the resulting fractal.
Figure 3 exhibits the same fractal
as the one shown in figure 2. Only
here the value of C that does not
generate a solution after 200 itera-
tions of formula (1), but are not
diverging either, are coloured
gray. The red colour represents the
area  where equation (1) diverges
after less than 10 iterations, blue
after less than 16; high blue after
less than 22 etc.
The repetitive pattern of the fractal
is shown in figure 4. This fractal is
the result of applying equation (1)
to a part of the fractal in figure 3
and magnifying that part along the

X- and Y-axis with a factor of approximately 1000. Observe the repetitive pattern of the
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Mandelbrot cusps in the fractal of picture 3.
. 
 
There is a different way to represent the complete Mandelbrot set. Instead of colouring the
points of C in equation (1) we could colour the found solutions of equation (2) and assign
a specific colour (gray) to the values of C that do not diverge after having iterated equation
(1) 200 times. The result is depicted in figure 5. This picture is generated with the same
values for C and the same accuracy for the found solutions as those that were used in figures
2 and 3. This figure demonstrates clearly how the perimeter of the large cusp is broken
(fractured) and how smaller cusps merge from those broken parts. Similarly the perimeters
of the smaller cusps are broken and even smaller geometrical entities bulge out of these. The
repetitive pattern which is shown so clearly in figure 4 would also appear in figure 5 in
magnifying portions of the black coloured area that correspond with the gray areas in figure
4. The colours in the large cusp correspond with the speed with which solutions are found.
The more we approach the center of the large cusp, the faster our iteration process goes.

At the onset of this chapter I mentioned  that fractals have dimensions that don�t have to be
integer numbers. Mandelbrot defines a fractal dimension to be the quotient of two
logarithmic values: the natural log of the number of segments of a line (or curve) divided by
the reciprocal value of the ratio of the size of the segment with respect to the segmented line
(or curve). The original line AG contains a gap: BE. The gap is replaced by BC, CD and DE.
The geometrical entity consisting of AB-BC-CD-DE-EF-FG is called a generator and can
be used to construct a fractal curve that consist of elements with the same structure as the one
displayed in figure 6. This can be accomplished by replacing every line segment of AG by
a fraction of  the shape of  the generator and proceed to do that ad continuum. The dimension
is here log6/log4, assuming that the length of all 6 segments are 1/4th of the length of the line
without a gap: ABEFG.
A similar approach to determine the dimension of Mandelbrot�s fractal can be used to the
curve of the large cusp in figures 1 and 2. However, determining the length of the gaps in the
cusp and the exact structure of the smaller cusps that bulge out of the big one is extremely
difficult and can only be approximated. The resulting dimension will however be the same
for the calculated dimensions of the smaller cusps that in itself contain gaps and cups that
bulge out of them.
Note: Many programs that have been devised to create fractals are not stopping of the
iterative process of the attractor (attracting function) when the successive approximations of
the Z-value yields a solution. The iterative process continues until the maximum number of
iterations exceeds a specified value or the process diverges. Programs that stop after having
found a solution are by definition many times faster than those who ignore this and keep
processing until the specified number of iterations has been exhausted..
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Figure 6: A �fractured� dimension

                              
                              
                              

2. Compromised fractals.

Equation (1) is just an example of an attractor with which fractals can be generated. After
having explored the various details of the fractals of this attractor and the solutions that are
a result of solving equation (2) I tried a number of other attractors like  and Z Cn

3 + Z Cn
4 +

The results, though different from those of equation (1), did not satisfy my curiosity. Their
behavioural pattern were in fact similar to those of the attractor of equation (1). To my
surprise I discovered a problem in my old research notes that was not too difficult to crack
at that time but the mathematical formulation of the problem had a striking similarity with
the earlier mentioned attractors. The problem to solve was to find the roots of the equation:

(3)Z
Z

Z Cn
n

n
2

2 0− − + =
κ

Z and C are complex numbers, while 6 is a positive real number < 1.
Solutions can be found with the method of successive substitution, as described in the
previous chapter. Bringing Zn to the right hand side of the equation gives us

(4)Z Z
Z

Cn n
n

+ = − +1
2

2
κ

It turns out though that only a limited range of values for 6 can be used to determine the
solutions for a restricted value of C. Finding those solutions will be dealt with in a different
chapter. Although my main objective was to view the fractals that could be generated with
the attractor in equation (4), it soon became clear that investigating the values of 6 for which
equation (4) would still converge (and find solutions) became another part of my
investigations. It is clear that for 6 = 0 the attractor of equation (1) would be recreated. It
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Figure 7: Fractal of equation (4);6 = 0.01

Figure 8: Fractal with 6 = 0.0271705

appeared that  the values  to be selected were lying in the range 0.02472> 6  > 0. For
example, for 6 = 0.01. I generated  the fractal shown in figure 7 and for 6 = 0.02471705 the
fractal shown in figure 8. The boundary coordinates of figure 7 are (-2, .8) for the top left
corner and (1.2, -2) for the bottom left corner. These values are respectively (-.5, 0) and (1,

-1) for figure 8. The maximum amount of itera-
tions are in both cases 200 and the required
accuracy for found solutions .0001. The maxi-
mum value of the absolute value of Z for which
equation (4) is supposed to not diverge is set to
the value 2. The black area in figure 7 contains
all values of C for which solutions to the equa-
tion (3) were found. In figure 8 no black areas
are visible. For this value of 6 solutions were
found for C = .3647905 - i*1647145 and C =
.3647945 - i*1647125. It may be expected that
between these two values more solutions can be
found that satisfy equation (3). However the
number of iterations of equation (4) to arrive at
these solutions were 719308 and 673787 respec-
tively while the accuracy of found solutions was
limited to 10-3. At this point my interest in
�pretty� pictures was replaced by an interest in
finding the maximum value of  6 for which
solutions for the equation (3) could still be found
and in my quest to finding this value of 6 with
the method of successive substitution  I ran out
of computer resources. I do expect though that
the maximum value of 6 will not exceed
0.027172. 
For an analytical approach in determining this

maximum value of 6 we have to solve the following equations:

a(2b - y + q) - b(x - p) = 0 (5)
and a(a - x + p) + b(y - q - b) = 6 (6)

where C = p + i*q; Z = x + i*y; b = 2xy; and a = x2 - y2.  The area were for 6 = 0.0271705
the abovementioned solutions were found is encircled with a pencil in figure 8.
For specific values of C and 6 it is possible to evaluate the existence of a solution for Z.  For
instance: Z = 1 - i for C = 1 + i*(6/2+1), no matter what value we choose for 6.  For Z = 3
+ i, the value of C becomes (-125+26)/25 + i*(-250-36)/50. This means that we can always
find  solutions for equation (3) for all values of 6. However, the method of successive
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Figure 9: As figure 8 with D = 0.1

substitution does not help us here. At this point the orientation of my work shifted towards
finding solutions for equation (3). This and the use of relaxation factors will be discussed
in the next chapter.

3. Finding solutions.

So far I have used an unmodified version of the method of successive substitution.. A variant
to this method will generate many more solutions than the strict way in which the newly
found value  Zn+1 is inserted in the equation containing a function of  Zn, as in:

(7)Z F Z Cn n+ = +1 ( )
The method of the successive substitution  does not provide us with all of the possible
solutions of the equation:

(8)F Z Z C( ) − + = 0
The more successful method consists of inserting a value of  Zn+1 into equation (7), where
Zn+1 consists of a combination of the previous value of  Z and the newly calculated value of
Z.
That combination is achieved with the aid of a relaxation factor. The new value used to
calculate the right hand side of equation (7) becomes  D.Zn + (1-D).Zn+1 . In this case equation
(7) is transformed into:

(9)Z Z F Z Cn n n+ = + − +1 1ρ ρ. ( ).( ( ) )

where  D is the relaxation factor. This method was first proposed by Wegstein and I will refer
to this modified version of the method of successive substitution as Wegstein�s method.

The amount of found solutions for D = 0.1 and
D = 0.35 are shown in figures 9 and 10. These
figures need to be compared with figure 8. The
exact same values for generating figure 8 were
used to create the, what I call,  �compromised�
fractals in figures 9 and 10.
As in previous figures, the black area contain the
values of C for which equation (3) yields results
with the Wegstein�s method of using a relaxation
factor of 0.1. The gray areas bordering the black
ones represent values of C for which the number
of iterations necessary to find a solution is
greater than 200, the limiting factor that we

introduced in order to create the fractals described in this paper. These values of C (the gray
areas) will definitely contain solutions to equation (3) if we allow the process to proceed
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Figure 10: As figure 9 with D = 0.35

beyond the 200 iterations. This area may also
contain values of C for which the process might
eventually diverge. But choosing an even larger
relaxation factor will also force the process to
produce more solutions as is shown in figure 10
which represents the results of finding solutions
for equation (3) with a relaxation factor of 0.35.
It is also clear that the structure and properties of
this compromised fractal have changed dramati-
cally in this situation. Areas containing values of
C that already diverged after 4 to 8 steps with
the method of successive substitution take much
longer with Wegstein�s method and an appropri-

ate choice of the relaxation factor. Also patterns that were completely absent in figure 9
emerge here, and extend across the boundaries that were set for the process with which
figure 9 was created. 
I applied Wegstein�s method in trying to find the roots of equation (3) with  6=162.5. This
results in a value for C = 8 - i*14.75. (See the end of the previous chapter). Wegstein�s
method refused to generate Z=3 + i  as a root of equation (3). Substituting this value of C
into equations (5) and (6) produced the required results 0 and 162.5 respectively. The
relaxation factor  D  that had to be used to obtain these results was 0.96. The seed value
(initial value) Z with which the iterations started was Z = 1 + i. The amount of iterations
required to obtain this solution was 257. The way in finding other solutions will be discussed
later.
The beauty of using this method is that it has a convergence speed that is equal or even faster
than that of the Newton-Raphson method without having to use the first derivative of the
function we are trying to solve. The difficulty in applying this method consists of having to
isolating Z from its equation and bringing it to the right-hand side (or zero side of the
equation. This difficulty is best shown in solving the equation:

X3 - 2 = 0 (10)
This equation can be written as:

X = X3 + X - 2 (11) or
X = (2 + 5X - X3)/5 (12)

Applying the substitution method, equation (11) quickly diverges, no matter what initial
value (seed value) of X is being used. Equation (12) however generates a solution with an
accuracy of 5 fractional digits in 4 steps. A similar problem may be encountered with the use
of relaxation factors. Applying Wegstein�s  method to equation (1), the equation with which
the Mandelbrot set was generated. I discovered that most solutions to equation (2) could be
produced by applying a relaxation factor of approx. 0.95. It was remarkable how these
compromised fractals changed by generating pictures with equation (1) and using relaxation
factors with increasing values. The initial Mandelbrot fractal kept its shape for a long time,
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but started to display completely different characteristics once the relaxation factor was set
to 0.5 or higher.   
The technique of applying the method of successive substitution to the abovementioned
equation (10) and resulting in equations (11) and (12) was also used to find more roots of
equation (3). This equation was substituted by the following 2 equations:

Z2 - 6/Z2 + Z - 2Z + C = 0 (13)
and Z2 - 6/Z2 - 2Z + Z + C = 0 (14)
These 2 equations can be written as equations to which the method of successive substitution
can be applied:

(15), andZ Z Z Z Cn n n n+ = − + +1
2 2 2( / ) /κ

(16)Z Z Z Z Cn n n n+ = − − − +1
2 2 2( )κ

respectively.
Applying the substitution  method without using relaxations factors failed in both cases. I
was more successful with Wegstein�s method, for which the successive iteration equations
can be expressed as:

(17)Z Z Z Z Z Cn n n n n+ = + − − + +1
2 21 2ρ ρ κ. ( ).( / ) /

and (18).Z Z Z Z Z Cn n n n n+ = − − − − +1
2 21 2ρ ρ κ. ( ).( / )

Expression (17) took 980 iterations with a relaxation factor D of 0.96 to find the solution 
Z = 1.57933 + i*3.93098 and expression (18) found the solution with which we started the
calculations of 6 (162.5) and C (8 - i*14.75), namely Z = 3 + i in 47 iterations with a
relaxation factor D being 0.9. All these calculations were performed with specially written
programs. No fractals were generated and verification of the results was done on examining
the calculated numerical results.

4. Feedback systems compared with the methods of successive substitution  and Wegstein.

A feedback system consists of a (more or less complicated) process by which input data or
input stimuli are transferred in output data or stimuli and where these outputs are fed back as
inputs into the process.  See figure 11. These kind of systems are used in many industrial
systems and disciplines. Quite often a feedback loop is required to put the process in a stable
state after a start-up. The fed back data or stimuli are used to enhance the initial data or
stimuli until a steady state has been achieved. Applications of feed back systems are to be
found in electronic engineering (creating steady states for parts of a circuit or memory),
mechanical systems (to make sure that changes in the input do not destabilize the process),
and chemical or production systems (making sure that the process is constantly fed with data
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Figure 11: Graphical representation of the 
method of successive substitution.

Figure 13: Graphical representation of
Wegstein�s method

Figure 12: Process with a feedback loop.

or stimuli in order to provide for a continuous
flow of the process).  
The method of successive substitution can be
compared with a feedback system in that the
output Zn+1 is fed back into the function F(Zn).
Normally we end this process until Zn+1 has
reached a value that is acceptable. Mostly this
means that feeding Zn+1 back into the function
F(Zn) does not change the resulting value of this
function. The input value Zn is assigned the
calculated value Zn+1. The comparison with the
earlier mentioned feedback system would be
complete if we would continue to calculate the
function, despite the fact that no further changes
occur to the series of values that we calculate for
Zn+1. (Figure 12).
Wegstein�s method works in exactly the same
way, be it that we mix the input value with the
calculated output value and feed the combination
of these two values back into the function. Also
here, the process continues until we achieve a
stable situation, that is the subsequent values of
Zn+1 become stable and change no more. Figure 13
is a graphical representation of Wegstein�s
method.
When determining the new input value we calcu-
late the product of the relaxation factor D and Zn
and add the product of (1-D) and F(Zn) to that. In
the programs that were used for these calcula-
tions I took the old value of Zn, determined Zn+1
with F(Zn) and combined Zn and  Zn+1

 with the
equation  D.Zn+(1-D).Zn+1. This value is then
assigned to Zn and becomes the new input value.
We can view the representations in figures 12 and
13 as a feedback system. These systems will take
a certain time to stabilize which is the case once
F(Zn) and D.Zn+(1-D).Zn+1 yields results that are
not changing anymore. In that case initialization
of the system has been completed. Any small
changes of the input value Zn will correct the
system and will continue to result in the re-
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Figure 14: Julia fractal with fixed C value

quired output. This is of great value in situations where the input value is supposed to remain
constant. Slight variations will be corrected immediately by this kind of feedback system. Of
course, these corrections are obtained faster with the Wegstein method than the method of
successive substitution. The choice of the right value of D is important here. Equation (4)
shows such a situation. The problem was to find a minimum value of  6 and obtain a stable
situation for the feedback loop defined with this equation. (The equation represented part of
a mathematical model for a heat transfer problem in an experimental Sterling engine).
                                            
5. Fractals revisited. 

As described in chapter 3 we used the equation  (equation 1) to create aZ Z Cn n+ = +1
2

Mandelbrot set and its accompanying fractal. The real and imaginary values of C were varied
in this process and we started every set of iterations for each value of C with the same initial
value of Z, being 0 + i*0. The fractal that was generated that way consisted of all points for

which the iterations would
diverge. A large number of
points were thus excluded
from the definition of the
fractal since many solutions
were found and many other
points stayed within the
boundary limit of Z (being
the absolute value of Z and
specified to have the value
2). Another way of generat-
ing fractals in which we are
almost always assured of
diverging iterations is to fix
the value of C and vary the
initial or starting values of
Z. Figure 14 is a fractal of
which the value is fixed at
C = -.01 + i*0.88. A com-

pletely arbitrary choice. We then varied the initial value of Z from -1.6 + i*1.6 and 1.2 -
i*1.2. In other words the values of the real part of Z or X-coordinates vary from -1.6 to 1.6
with intervals equal to 3.2/640. The values that correspond with these intervals are mapped
to the values of the pixels along the horizontal axis of the screen. Similarly, the values of the
imaginary part of Z vary from 1.2 to -1.2 with intervals equal to 2.4/480. These correspond
with the values of the pixels along the vertical axis of the screen. With a specified accuracy
of any possible solution equation Z2 - Z + C = 0 of 0.0001, a maximum  number of iterations
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Figure 15: Detailed view of the fractal of figure 14.

set to 200 and an absolute
value of Z being equal to 2
we obtained a fractal as
shown in figure 14. Every
in i t i a l  va l u e  of  Z
corresponds with a specific
way in which equation (1)
behaves with respect to the
speed with which it
diverges. For every speci-
fied value of C we will ob-
tain a different fractal that is
associated with the use of
this equation. This fractal
does not resemble the ones
describes in chapter 3 at all.
However, the repetitive
character is still there and is

best shown in the detailed view of figure 15 of this fractal. Here the top-left corner of the
fractal has an initial Z-value of -0.32- i*0.256 and the value of the bottom-left corner is here
-0.96 - i*0.144. During the generation of the fractal it was noticed that one solution was
found. The Z-value of this solution was -.3058 + i*0.5467. The dark gray areas in figure 15
represent points of the fractal where the initial value of Z exceeded the maximum amount of
200 iterations. If I would have been focused entirely on generating fractals I should have
should these method of generating them, but I would never have been sidetracked into trying
to find solutions for the various equations that I used. The fractals generated with this method
are called Julia fractals. The name has its origin in that of the French mathematician Gaston
Julia (early 20th century).


