Solution of Question 4 Tutorial Sheet 3

4* Consider the following solitaire games: for every integer i, there is an unlimited supply of balls marked with the number i. Initially, we are given a tray of balls, and we throw away the balls in the tray one at a time. If we throw away a ball that is marked with i, we can replace it by any finite number of balls marked $1,2, \ldots i-1$. (Thus, no replacement will be made if we throw away a ball marked with 1.) The game ends when the tray is empty. Determine whether the game always terminates for any tray of balls given initially.

Solution

For $n=1$, there is a finite number of balls marked with 1 in the tray initially.
Since there is no replacement after a ball marked 1 is thrown away, the game terminates after a finite number of moves.

We assume that the game terminates if the largest number that appears on the balls is k .
Consider the case when the largest number that appears on the ball is $k+1$.
According to the induction hypothesis, we eventually have to throw away a ball marked $k+1$.

If we throw away only balls marked $1,2, \ldots . k$, they will be exhausted in a finite number of moves.

Repeating this argument, we would have thrown away all balls marked with $k+1$ in a finite number of moves.

Again, by induction hypothesis, the game terminates after a finite number of moves from then on.

