Hong Kong Institute of Vocational Education (Chai Wan, Sha Tin \& Kwai Chung Campuses)

Department of Computing \& Mathematics / Computing

Solution of Sessional Examination (1999/2000)

Course Code: 41111
Subject : Discrete Mathematics \& Statistics
Section A: Short Questions. (5\% each)

1. $(A \cap \bar{B}) \cup(\bar{A} \cap B) \cup(A \cap B)$
$=(A \cap \bar{B}) \cup(A \cap B) \cup(\bar{A} \cap B)$
$=(A \cap(\bar{B} \cup B)) \cup(\bar{A} \cap B)$
$=(A \cap U) \cup(\bar{A} \cap B)$
$=A \cup(\bar{A} \cap B)$
$=(A \cup \bar{A}) \cap(A \cup B)$
$=U \cap(A \cup B)$
$=A \cup B$
2. (a) " $\exists m \in E$ such that $m^{2}=m "$ is false.

Note that $m^{2}=m$ is not true for any integers m from 5 to 10 :
$5^{2}=25 \neq 5, \quad 6^{2}=36 \neq 6, \quad 7^{2}=49 \neq 7$
$8^{2}=64 \neq 8, \quad 9^{2}=81 \neq 9, \quad 10^{2}=100 \neq 10$
(b) Take $x=0.5$. Then x in R (since 0.5 is a real number) and $(0.5)^{2}=0.25 \geq 0.5$ Hence " $\forall x \in R, x^{2}=x$ " is false.
3. (a) Let n and m be odd integers.

Then $n=2 k+1$ for some integer k and $m=2 j+1$ for some integer j
The product $n m=(2 k+1)(2 j+1)=2(2 k j+k+j)+1$ which is odd.
(b) The truth set of $P=\{i, e, a, o\}$
4.

$$
\begin{aligned}
\text { (a) } \mathrm{AQ}+\mathrm{BQ} & =\mathrm{I} \\
{\left[\begin{array}{cc}
-2 & 3 \\
1 & 0
\end{array}\right] \mathrm{Q}+\left[\begin{array}{cc}
5 & 1 \\
-1 & 2
\end{array}\right] \mathrm{Q} } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\left(\left[\begin{array}{cc}
-2 & 3 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
5 & 1 \\
-1 & 2
\end{array}\right]\right] \mathrm{Q} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & 4 \\
0 & 2
\end{array}\right] \mathrm{Q} } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathrm{Q} & =\frac{1}{6}\left[\begin{array}{cc}
2 & -4 \\
0 & 3
\end{array}\right] \quad \text { Note: } \mathrm{Q} \text { is the inverse of }\left[\begin{array}{ll}
3 & 4 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \mathrm{RA}=\mathrm{C} \\
& \mathrm{R}\left[\begin{array}{cc}
-2 & 3 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-5 & 9 \\
6 & -6
\end{array}\right] \\
& \text { R.A.A }{ }^{-1}=\mathrm{C} \cdot \mathrm{~A}^{-1} \Rightarrow \mathrm{R}=\mathrm{C}^{-1} \mathrm{~A}^{-1} \\
& \mathrm{R}=\left[\begin{array}{cc}
-5 & 9 \\
6 & -6
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & 1 \\
1 / 3 & 2 / 3
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
-2 & 2
\end{array}\right] \quad \text { Note: } \mathrm{A}^{-1}=\left[\begin{array}{cc}
0 & 1 \\
1 / 3 & 2 / 3
\end{array}\right]
\end{aligned}
$$

5. In figure $1, \mathrm{n}=5$ but $\operatorname{deg} v_{2}=2<\mathrm{n} / 2$, so Dirac's theorem does not apply.

However, $\operatorname{deg} v_{i}+\operatorname{deg} v_{j} \geq 5$ for all pairs of non-adjacent vertices v_{i} and v_{j}, so this graph is Hamiltonian by Ore's theorem.

One of the possible cycle is $v_{1} v_{5} v_{2} v_{4} v_{3} v_{1}$.
6. (a) The required number is:

$$
\begin{aligned}
& =\left\lfloor\frac{1000}{4}\right\rfloor+\left\lfloor\frac{1000}{6}\right\rfloor-\left\lfloor\frac{1000}{12}\right\rfloor \\
& =250+166-83 \\
& =333 \#
\end{aligned}
$$

(b) The required number is:

$$
\begin{aligned}
& =1000-\left\{\left\lfloor\frac{1000}{4}\right\rfloor+\left\lfloor\frac{1000}{6}\right\rfloor+\left\lfloor\frac{1000}{9}\right\rfloor-\left\lfloor\frac{1000}{12}\right\rfloor-\left\lfloor\frac{1000}{36}\right\rfloor-\left\lfloor\frac{1000}{18}\right\rfloor+\left\lfloor\frac{1000}{36}\right\rfloor\right\} \\
& =1000-289 \\
& =611_{\#}
\end{aligned}
$$

7. (a) $\quad \mathrm{P}$ (the committee consists of 3 men and 3 women)

$$
=\frac{{ }_{20} C_{3} \cdot{ }_{17} C_{3}}{{ }_{37} C_{6}}=\frac{775,200}{2,324,784}=0.333
$$

(b) $\quad \mathrm{P}$ (the committee must have at least 4 men)

$$
=\frac{{ }_{20} C_{2} \cdot{ }_{17} C_{4}+{ }_{20} C_{1} \cdot{ }_{17} C_{5}+{ }_{20} C_{0} \cdot{ }_{17} C_{6}}{{ }_{37} C_{6}}=\frac{512,176}{2,324,784}=0.220_{\text {\# }}
$$

8. (a) $P(2)=e^{-1.5}\left(1.5^{2}\right) / 2!=0.251$
(b) $\quad \mathrm{P}(0)=\mathrm{e}^{-1.5}=0.223$

Probability of no breakdown during the three consecutive shifts
$=\mathrm{P}(0) \times \mathrm{P}(0) \times \mathrm{P}(0)$
$=0.223^{3}$
$=0.0111$

Section B: Structured Questions. (12\% each)
9.

$$
\overline{A \cup(B \cap C)}
$$

$$
(\bar{C} \cup \bar{B}) \cap \bar{A}
$$

Since they have the same Venn diagram, therefore they are equivalent.
(b)

(i) $31+(16-x)+(15-x)+x+12=68$ $x=6$ students
(ii) $9+10+11=30$ students
(iii) $5+6+7+8=26$ students
(iv) 8 students
10. (a) (i) $p:$ Tom is on team A
q : Peter is on team B
\therefore : Therefore

$$
\begin{aligned}
& \sim p \rightarrow q \\
& \sim q \rightarrow p \\
\therefore & \sim p \vee \sim q
\end{aligned}
$$

(ii)

p	q	$\sim p$	$\sim q$	$\sim p \rightarrow q$	$\sim q \rightarrow p$	$\sim p \vee \sim q$	$[(\sim p \rightarrow q) \wedge(\sim q \rightarrow p)] \rightarrow(\sim p \vee \sim q)$
T	T	F	F	T	T	F	F
T	F	F	T	T	T	T	T
T	T	T	F	T	T	T	T
T	F	T	T	F	F	T	T

The statement form $[(\sim p \rightarrow q) \wedge(\sim q \rightarrow p)] \rightarrow(\sim p \vee \sim q)$ is not a tautology, hence the argument is invalid.
(b) (i) The contrapositive of a conditional statement of the form "If p then q " is If $\sim q$ then $\sim p$.
(ii) If Robert cannot swim to the island, then Robert cannot swim across the lake.
(c) The truth value of $(\sim(p \wedge q)) \rightarrow q$ can be determined

If $p \rightarrow q$ is false, then p is true and q is false.
Hence $p \wedge q$ is false, $\sim(p \wedge q)$ is true, and $(\sim(p \wedge q)) \rightarrow q$ is false.
11. (a) i) $R_{1} \cup R_{2}$

$$
=\{(a, S 1),(a, S 4),(b, S 2),(b, S 3),(b, S 5),(c, S 2),(c, S 5),(c, S 6),(d, S 4),(d, S 5),(d, S \sigma)\}
$$

ii) $\quad R_{1} \cap R_{2}=\{(a, S 1),(b, S 2),(d, S 4),(d, S 6)\}$
iii) $\quad R_{1} \backslash R_{2}=\{(b, S 3),(c, S 2),(c, S 5),(c, S 6)\}$
(b) i) $\quad P\left(E_{1} \mid E_{3}\right)=\frac{P\left(E_{1} \cap E_{3}\right)}{P\left(E_{3}\right)}=\frac{C(4,2)}{C(5,3)}=\frac{6}{10}=\frac{3}{5}$ \#
ii) $\quad P\left(E_{3} \mid E_{2}\right)=\frac{P\left(E_{3} \cap E_{2}\right)}{P\left(E_{2}\right)}=\frac{C(4,2)}{2^{4}}=\frac{6}{16}=\frac{3}{8}$
iii) $\quad P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \cap E_{1}\right)}{P\left(E_{1}\right)}=\frac{2^{3}}{2^{4}}=\frac{1}{2}$ \#
iv) $P\left(E_{3} \mid E_{1} \cap E_{2}\right)=\frac{P\left(E_{1} \cap E_{2} \cap E_{3}\right)}{P\left(E_{1} \cap E_{2}\right)}=\frac{C(3,1)}{2^{3}}=\frac{3}{8}$ \#
v) Yes
vi) No
12.
(a)

Center	Earliest time each receives the news
B	$3: 03 \mathrm{p} . \mathrm{m}$.
C	$3: 04 \mathrm{p} . \mathrm{m}$.
D	$3: 05 \mathrm{p} . \mathrm{m}$.
E	$3: 06$ p.m.
F	$3: 04 \mathrm{p} . \mathrm{m}$.
G	$3: 07 \mathrm{p} . \mathrm{m}$.
H	$3: 08 \mathrm{p} . \mathrm{m}$.

(b)

minimum weight $=3+3+2+5=13$
13.
a.
i.

$$
\begin{array}{ll}
\text { i. } & \mu=4.5, \quad \sigma=1.1, \\
& \mathrm{P}(\mathrm{X}>6)=\mathrm{P}[\mathrm{Z}>(6-4.5) / 1 . \\
& \mathrm{P}(\mathrm{X}<5)=\mathrm{P}[\mathrm{Z}<(5-4.5) / 1 . \\
& \mathrm{P}(\mathrm{X}<5 \text { or } \mathrm{X}>6)=\mathrm{P}(\mathrm{X}<5)+ \\
\text { ii. } & \mathrm{P}\left(\mathrm{Z}>\mathrm{Z}_{\mathrm{o}}\right)=0.05 \\
\mathrm{Z}_{\mathrm{o}} & =1.645 \\
& \mathrm{X}-4.5) / 1.1=1.645 \\
& =6.31 \text { minutes }
\end{array}
$$

$$
\mathrm{P}(\mathrm{X}>6)=\mathrm{P}[\mathrm{Z}>(6-4.5) / 1.1]=\mathrm{P}(\mathrm{Z}>1.364)=1-0.9131=0.0869
$$

$$
\mathrm{P}(\mathrm{X}<5)=\mathrm{P}[\mathrm{Z}<(5-4.5) / 1.1]=\mathrm{P}(\mathrm{Z}<0.4545)=0.6736
$$

$$
\mathrm{P}(\mathrm{X}<5 \text { or } \mathrm{X}>6)=\mathrm{P}(\mathrm{X}<5)+\mathrm{P}(\mathrm{X}>6)=0.6736+0.0849=0.7585
$$

b. i. $\quad \mathrm{P}(2)={ }_{15} \mathrm{C}_{2}(0.1)^{2}(1-0.1)^{13}=0.2669$
ii. $\quad \mathrm{P}(\mathrm{X}>0)=1-\mathrm{P}(0)=1-(1-0.1)^{15}=1-0.2059=0.7941$

