Name: \qquad () Class: \qquad Marks: \qquad

Department of Computing

Discrete Mathematics and Statistics
 Assignment 1

Hand-out Date: $12 \mathfrak{N}$ ovember, 2001.
Hand-in Date : $26 \mathfrak{N}$ ovember, 2001.

You are warned to refrain from plagiarism. Both the plagiarist and the students whose work has been plagiarised will be penalized appropriately. $\mathcal{A n s}$ wer $\mathcal{A L L}$ questions. All working must be cle arly shown. Totalmarkis 50 .

1. In a survey of 100 customers, the fast food restaurant found that 52 preferred hamburgers for their lunch, 61 preferred lunch boxes and 65 preferred noodles. In addition, 30 enjoyed famburgers and noodles and 40 enjoyed lunch boxes and noodles. 10 customers enjoyed them all and 7 customers do not like any of them.
(a) Construct a Venn diagram to present the data of the survey.
(6) How many customers enjoy famburgers and noodles?
(c) How many customers prefer only hamburgers for their lunch?
2. Ulse identities of sets, with explanations, to simplify the following set expression.

$$
(\mathcal{A} \cap \overline{\mathcal{B}}) \cup(\mathcal{A} \cap \overline{\mathcal{C}})
$$

$$
\begin{equation*}
f(p)=(p+13) \bmod 26 \tag{5}
\end{equation*}
$$

4. By using $\mathcal{M I}$, show that for every positive integer n,

$$
\begin{equation*}
1+4+7+\ldots \ldots+(3 n-2)=\frac{3 n^{2}-n}{2} \tag{8}
\end{equation*}
$$

5. Determine whether $p \rightarrow[q \vee \sim(p \rightarrow q)]$ is a tautology.
6. (a) Convert the following argument to its symbolic form.

If the IP address of the computer is correct, then the computer can access all workgroup computers within the local $\mathcal{L A N}$.

If the settings of IP, $\mathcal{D N S}$ and Gate way $\mathcal{A d d r e s s e s}$ are correct, then the computer can access Internet.
\mathcal{N} (ow the computer can access all workgroup computers within the local $\mathcal{L A N}$ but cannot access Internet.

Therefore, either the $\mathcal{D N S}$ address or the Gate way address is incorrect.
(6) $\mathcal{B} y$ using truth table, determine whether the argument in (a) is valid.
7. Ulse proof by contradiction to prove that the product of a nonzero rational number and an irrational number is irrational.

