1. (a)

[minus 1 mark for each mistake]
(b) $7+5+30+10+20+21-x+x+22-x=100$
$x=15$
25 customers enjoy hamburgers and noodles.
(c) $22-15=7$
2. $(A \cap \bar{B}) \cup(A \cap \bar{C})$
$=A \cap(\bar{B} \cup \bar{C})$
$=A \cap \overline{B \cap C}$
$=A \backslash(B \cap C)$
3. $f^{-1}(p)=(p-13) \bmod 26$

	N	A	G	U	E	N	K
p	13	0	6	20	4	13	10
$f^{-1}(p)$	0	13	19	7	17	0	23
	A	N	T	H	R	A	X

4. Let $p(n): 1+4+7+\ldots . .+(3 n-2)=\frac{3 n^{2}-n}{2}$

For $n=1$,
LHS $=1$
RHS $=\frac{3(1)^{2}-1}{2}=1$
LHS $=$ RHS $\Rightarrow p(1)$ is true.

Assume $p(k)$ is true;
i.e. $1+4+7+\ldots \ldots \ldots+(3 k-2)=\frac{3 k^{2}-k}{2}$

For $n=k+1$
LHS $=1+4+\ldots \ldots . .+(3 k-2)+(3 k+1)$
$=\frac{3 k^{2}-k}{2}+(3 k+1)$
$=\frac{3 k^{2}+5 k+2}{2}$
RHS $=\frac{3(k+1)^{2}-(k+1)}{2}$
$=\frac{3 k^{2}+5 k+2}{2}$
\therefore LHS $=$ RHS $\Rightarrow P(k+1)$ is true
By Principle of MI, $p(n)$ is true for all + ve integer n
5.

p	\rightarrow	C	q	v	\sim	$($	P	\rightarrow	q
T	T		T	T	F	T	T	T	
T	T		F	T	T	T	F	F	
F	T		T	T	F	F	T	T	
F	T		F	F	F	F	T	T	

Therefore, the statement is a tautology.
6.(a) Let
$\mathrm{p}=\mathrm{IP}$ address of the computer is correct
$\mathrm{q}=$ the computer can access all workgroup computers within the local LAN
$\mathrm{r}=$ DNS address is correct
$\mathrm{s}=$ Gateway address is correct
$\mathrm{t}=$ the computer can access Internet
$p \rightarrow q$
$r \wedge s \wedge p \rightarrow t$
$q \wedge \sim t$
$\therefore \sim r \vee \sim s$
(b) The argument is valid.

Proved by Truth Table. [$(p \rightarrow q) \wedge(r \wedge s \wedge p \rightarrow t) \wedge(q \wedge \sim t) \rightarrow(\sim r \vee \sim s)$ is tautology]
7. Let p be a nonzero rational number and q be an irrational number.

Therefore

$$
p=\frac{r}{s}
$$

where r and s are integers.
Assume $p q$ is a rational number
Then

$$
p q=\frac{t}{u}
$$

where t and u are integers.

$$
\begin{aligned}
& \Rightarrow \frac{r}{s} q=\frac{t}{u} \\
& \therefore q=\frac{t s}{r u}
\end{aligned}
$$

Thus q is rational number (Contradiction)
Hence the product of a nonzero rational number and an irrational number is irrational.

