1. (a)

[minus 1 mark for each mistake]

(b) 7+5+30+10+20+21-x+x+22-x = 100x = 15 25 customers enjoy hamburgers and noodles.

(c)
$$22 - 15 = 7$$

2.
$$(A \cap \overline{B}) \cup (A \cap \overline{C})$$

= $A \cap (\overline{B} \cup \overline{C})$
= $A \cap \overline{B \cap C}$
= $A \setminus (B \cap C)$

3.
$$f^{-1}(p) = (p-13) \mod 26$$

	Ν	А	G	U	E	Ν	Κ
р	13	0	6	20	4	13	10
$f^{-1}(p)$	0	13	19	7	17	0	23
	А	Ν	Т	Η	R	А	Х

4. Let
$$p(n):1 + 4 + 7 + \dots + (3n - 2) = \frac{3n^2 - n}{2}$$

For $n = 1$,
LHS = 1
RHS = $\frac{3(1)^2 - 1}{2} = 1$
LHS = RHS \Rightarrow p(1) is true.

Assume p(k) is true;

i.e.
$$1+4+7+\dots+(3k-2)=\frac{3k^2-k}{2}$$

For
$$n = k+1$$

LHS = $1 + 4 + \dots + (3k - 2) + (3k + 1)$
 $= \frac{3k^2 - k}{2} + (3k + 1)$
 $= \frac{3k^2 + 5k + 2}{2}$
RHS = $\frac{3(k + 1)^2 - (k + 1)}{2}$
 $= \frac{3k^2 + 5k + 2}{2}$
 \therefore LHS = RHS $\implies P(k+1)$ is true

By Principle of MI, p(n) is true for all +ve integer n

5.											
р	\rightarrow	[q	v	~	(Р	\rightarrow	q)]
Т	Т		Т	Т	F		Т	Т	Т		
Т	Т		F	Т	Т		Т	F	F		
F	Т		Т	Т	F		F	Т	Т		
F	Т		F	F	F		F	Т	Т		

Therefore, the statement is a tautology.

6.(a) Let

- p = IP address of the computer is correct
- q = the computer can access all workgroup computers within the local LAN
- r = DNS address is correct
- s = Gateway address is correct
- t = the computer can access Internet

 $p \to q$ $r \land s \land p \to t$ $q \land \sim t$ $\vdots \sim r \lor \sim s$

- (b) The argument is valid. Proved by Truth Table. $[(p \rightarrow q) \land (r \land s \land p \rightarrow t) \land (q \land \sim t) \rightarrow (\sim r \lor \sim s)$ is tautology]
- 7. Let p be a nonzero rational number and q be an irrational number. Therefore

$$p = \frac{r}{s}$$

where r and s are integers.

Assume pq is a rational number Then

$$pq = \frac{t}{u}$$

where *t* and *u* are integers.

$$\Rightarrow \frac{r}{s}q = \frac{t}{u}$$
$$\therefore q = \frac{ts}{ru}$$

Thus q is rational number (Contradiction)

Hence the product of a nonzero rational number and an irrational number is irrational.