The N-Queens Six-way Solver
Dackral Phillips

Auburn University

phillds@eng.auburn.edu
Abstract
The N-Queens problem is a classical artificial intelligence constraint satisfaction problem (CSP). Many methods have been proposed to find solutions to the problem, and most of these involve searching schemes. In my approach to solving this problem, I used six different solution-finding algorithms, and make a comparison as to which works the best. The six solutions implemented are an O(N) approach first proposed in ACM SIGART Bulletin Vol. 2(2) page 7, a brute force backtracking algorithm, a backtracking algorithm with look-ahead capabilities, a steepest-ascent hill-climber, a next-ascent hill-climber, and a genetic search algorithm.

Keywords: Artificial Intelligence (AI), the N-Queens problem, backtracking algorithm, constraint satisfaction.

1. Introduction

The N-Queens problem is a classic artificial intelligence problem that has been used as a benchmark for many artificially intelligent algorithms. It’s combinatorial nature makes the problem a perfect candidate for algorithm benchmarking simply due to the shear amount of time it takes to conduct an exhaustive search on the solution space. In this paper, I present algorithm implementations that solve the N-Queens problem.

2. Problem Description

2.1 General Problem Layout
The format of the N-Queens problem is as follows. On a chessboard of dimensions n x n, a set of n Queens must be positioned on the board, such that no queen is attacking any other queen. Queens can attack according to normal rules of chess, namely via rows (referred to as ranks in chess terminology), columns (files), as well as along diagonals. Only boards of size four or higher have solutions, and there is usually more than one solution per board, of course, some of these solutions are mirrors of others. The solution to the four-queen problem is an example of one such board that has only one solution that can be mirrored only. All subsequent boards have more than one arrangement. As queens are placed on the board, the lines of force that they exhibit down the ranks, files, and diagonals drastically decreases the search space as they are added, such that when n – 1 queens have been placed, only one position is left open for the remaining queen in the case of a solution. In the case of a board not having a solution, the entire board has been placed in danger when the n – 1th queen has been placed, if not before.

2.2 Mathematical Implications
As previously mentioned, the N-Queens problem is a combinatorial problem. It has a simple and regular structure, and because of this, it is frequently used to test new AI strategies [2]. Most research done on the N-Queens problem has been on a single probable solution. In my implementation, however, I diversify by trying several different algorithms.

3. Problem Approach

My initial approach to the problem was to pull out my trusty chessboard and solve the problems manually for n <= 8. I was specifically looking for patterns in the way the queens were placed on the board. When I examined the solutions for n = 4, and n = 6, I thought I had found the pattern for which I had searched, unfortunately the pattern broke for n = 8. Below are figures demonstrating my pattern searching findings.

[image: image1.png]

Figure 1. Solution to the 4-queen problem

[image: image2.png]

Figure 2. Solution to the 6-queen problem

It would appear as if the solution to all even board problems would be to place a queen on row 1, column 2, and the subsequent queens a knight’s jump apart (2 squares down, 1 square right). Until n / 2 queens have been placed, then repeat the process from (n / 2) + 1 to n, this time beginning with column 1 rather than 2. This pattern does seem to hold with most boards, however, the pattern breaks on n = 8, due to queens being in conflict with each other along diagonals. This break in the pattern seems to occur whenever n is of the form n = 6k + 2 (e. g. 8, 14, 20, 26, etc.). For these boards another pattern must be found.

Odd boards appear to work the same way as their even counterparts, with the n – 1 pattern being applied for queens 1 to n. On queen n, the queen can be placed on the last square of the column. I apparently was not the first person to stumble upon this pattern. On further research, I found that ACM SIGART Bulletin Vol. 2(2) page 7 gives an algorithm that solves the N-Queens problem in O(N) time based on these very patterns.

4. Program Setup and Layout

Java was my language of choice for this assignment, namely for its platform independence, but also to help reinforce my learning of the language. I began by creating three object classes for solving the problem: ChessSquare, Board, and Queen.

4.1 ChessSquare Class
The ChessSquare class defines the basic fundamental unit of the chessboard – a chess square. Included in this class are two Boolean variable, checked and queenOn. The checked variable is used to determine whether a square is in danger. If a queen places a square in danger, this Boolean variable is toggled to true. The queenOn variable is used to tell whether or not a queen has been placed on the square. Initially, both of these variables are false. The following methods are a part of this class:

checkSquare() – sets the check variable to true.

placeQueen() – sets the check variable to true and the

queenOn variable to true.

unCheckSquare() – sets the check variable to false.

removeQueen() – sets the queenOn and checked

variables to false.

getChecked() – returns the value of checked.

getQueenOn() – returns the value of queenOn.

toString() – prints out variable values -- added for

debugging purposes.

4.2 Queen Class

The queen class is used to define some essential queen characteristics, as well as keep up with the position on which a queen currently is. This class includes three variables and one array. The integer variables xCoord and yCoord are used to keep track of the position at which a queen currently is. A Boolean variable, placed, tells whether or not a given queen has been successfully placed on the board, and the integer array free is used by the look-ahead algorithm to keep track of the next free square for a queen on a given file. The class contains the following methods:

setQueen() – places a queen at an x, y coordinate and

marks placed as true.

removeQueen() – removes a previously placed queen.

getX() – returns the Queen’s x coordinate value.

getY() – returns the Queen’s y coordinate value.
getPlaced() – returns the value of placed.

resetFree() – returns the free array to an unused state.

setFree() – sets a position in the free array.

getFree() – returns the next free position in the free

array.

toString() – prints out variable values -- added for

debugging purposes.

4.3 Board Class

The board class is the class that defines what a chessboard is, as well as contains the algorithms I have developed. For this class, there is a single integer variable, n, which defines how large the board is for a particular problem. A two-dimensional array of ChessSquares called matrix and an array of queens are also defined in the Board class. The class contains the following methods:

createLinesOfForce() – marks squares as endangered

when a queen is placed.

removeLinesOfForce() – removes marked lines of

 force.

placeQueen() – place a queen on a location.

removeQueen() – remove a queen from a location.

isSolution() – tests whether a given arrangement of

 queens on the board is a solution.

fillFree() – used in the look-ahead algorithm to place

 free squares in the free array.

whoopie() – function that performs genetic mating.

fitness() – function to calculate how close to a

 solution the current board is.

createBoardFromArray() – creates a chess board

 from a one dimensional

 array.

orderN() – solves the problem in O(N). Algorithm

adapted from [1].
modifiedBacktrack() – brute force back-tracking

algorithm.

lookAhead() – backtracking with arc-consistent look

ahead techniques implemented.

nextHillClimb() – performs the next-ascent hill

 climbing algorithm.

steepHillClimb() – performs the steepest-ascent

 hill-climbing algorithm.

geneticSearch() – performs the genetic search

Algorithm.

toString() – prints out variable values -- added for

 debugging purposes.

main() – gets the problem solving routine going. It

offers a menu whereby a user can input n

and the way in which he/she desires to solve the problem.

5. Algorithms Implemented

I implemented six different solutions on the system I designed. The first is an adaptation of the O(N) solution mentioned. I found information about this algorithm at a page created by Marty Hall at John Hopkins University [1]. I tailored Hall’s solution to go along with the Java classes and methods that I authored. The second algorithm is a simple brute force backtracking algorithm with a step saving first move. The third is an extension of this simple backtracking algorithm, which implements look-ahead arrays to keep track of free squares. These first three solutions provide a solution quickly and easily, however, due to the nature of the algorithms, the same solution is presented every time. Because there are multiple random solutions to larger boards, I wanted to write a set of algorithms that would give different solutions to the same size problems. To accomplish this goal, I created a next-ascent hill climber, a steepest-ascent hill climber, and a genetic search algorithm.

5.1 O(N) Algorithm
As previously stated, this algorithm comes directly from an article that appeared in ACM SIGART Bulletin Vol. 2(2) on page 7. I found an implementation of the algorithm by Marty Hall at Johns Hopkins University, and modified his public domain source code to work with my classes and algorithms. The solution given is done in O(N), however, only one solution can be presented for a given board size due to the formulas used to compute the position at which the queen should be placed [1].

5.2 Simple Backtracking

I created this algorithm to go through the board until a solution is reached, or until a dead-end is found. When a dead-end occurs, the algorithm backtracks to a previous file and moves the queen to a different rank. One thing I noticed about the solutions to the N-Queens problems I have examined is that a solution generally cannot be found on the first try when the first queen is placed on the first rank of the first file. For this reason, I added a small time saving step by forcing the queen to begin at the middle of the board or the (n / 2)th square for boards where n is even, and the ((n + 1) / 2)th square for odd sized boards. Like the O(N) solution, however, this only gives the same solution for a board over and over again.

5.3 Simple Backtracking with Look-Ahead

This algorithm is an extension of the last one, however, instead of trying every square by brute force repeatedly, I use an array to keep track of the free ranks in a given file. When a backtrack occurs, the next free square is used, instead of brute force checking each square. On larger-sized boards, this saves processing time. This solution gives the exact same answer to a given board as the previous algorithm, which again, does not lend itself to much originality.

5.4 Next-Ascent Hill-Climbing

In order to generate more diverse solutions to the N-Queens problem, rather than the same solution repeatedly, I created the last three algorithms with randomization in mind. This algorithm randomly generates a parent array, as well as (n * 2) children arrays. A fitness function is run on the parent array and the array is then copied to all the children arrays. One bit is flipped in per child to make it different from the parent. A new fitness is computed for the child, and the first child that is better than the original parent becomes the new parent. The fitness of a particular solution is measured by placing all the queens on a board and then counting the number of queens that are in conflict with each other.

One potential problem with this algorithm is the ability for the parents and children to reach a local maximum. This occurs when none of the children are better than the parent, yet a solution has not been reached (isSolution() returns false). In order to deal with this possibility, I have added a breakout routine, which practically guarantees a solution will be reached. I tried three different solutions.

First, I multiplied the parent fitness by a random constant between one and n, and the algorithm is automatically run again. I started thinking that it was practically useless to multiply the fitness by one, as the exact same predicament is reached.

In order to simplify matters, my second attempt was to simply multiply the parent by two. In all of my experimental results, a solution was obtained after both of these breakout routines were implemented, however, I feared that cycles may be a possibility in this implementation, due to the fact that they appeared in the next algorithm I describe and so I decided to do a little further work.

For my third and final attempt, I did not try to manipulate the fitness of the parent at all. Instead, I decided to cast lots for the next parent, and pseudo-randomly select the new parent, such that if no children turned out to be better than the parent, I randomly picked one and made it the new parent. This seems to work quite well, and so it is the breakout implementation that is currently in my source code.

5.5 Steepest-Ascent Hill-Climbing
The same basic setup is used as in the next-ascent hill-climbing algorithm. The only difference being that instead of taking the first child that is better than the parent, the best overall child is taken to be the next parent.

Again, the main problem with the implementation has been the capability of a local maximum to be reached, thus causing the solution-set to be “stuck.” I implemented the same breakout routines as in the previous hill-climber.

The first two attempts appeared to have absolutely no effect on the algorithm. More than likely, what occurred is that an infinite cycle was created, in which a child was picked to be the new parent, after the original parent’s fitness was changed. The children of this new parent included the previous parent, whose fitness value was better than all of the other children in the group, causing a cycle.

To deal with this problem, I again decided to let the computer pseudo-randomly pick which child to use as the new parent in order to break out of the local maximum. This appeared to have very good results. The algorithm terminates successfully almost always.

5.6 Genetic Algorithm

The last algorithm, a genetic search implements Darwinian survival of the fittest. At the outset of the algorithm, (n * 2) parents are randomly generated. Two parents are then selected at random and a child is produced by randomly taking bits from each parent on a probabilistic basis. Each bit has a 50% chance of being extracted from the father, and 50% from the mother. After the bit has been set, I have included a chance for random mutation such that each bit has a 10% chance of being reversed. This insures that even if two parents are exactly the same, a child has some probability of being diverse from the parent.

At the outset of this problem, I wanted to try to get the best possible child to be spawned from the overall gene pool. I found, however, that the selection of only the best parents tends to have the children clump at local maxima, and so I quickly abandoned this scheme for a more interesting one. Instead of picking the best parents, I switched my focus to have fate, again, decide which parents should mate. I began selecting two parents at random and mating them. The results were very good, with little sticking at local maxima.

I had considered stopping the algorithm after a set number of generations, but some of the larger boards I tried (n >= 8) were taking several hundreds of thousands of generations to complete, and so I decided to remove this constraint.

6. Experimentation

In order to test my algorithms, I conducted a series of tests on boards that range in size from four to 10, as well as a 20-queen board. The test system is described below as well as the results I obtained.

6.1 Architecture Used

The platform used to benchmark the algorithms was an AMD Athlon Thunderbird processor running at 1 GHz with 512 MB of RAM. The program was executed on the hard drive, a Western Digital 60 GB Caviar drive running at 5400 RPMs. The environment used to run the Java program was jGRASP, a programming environment developed by James Cross and Larry Barowski of Auburn University. The operating system used was Windows 2000 Advanced Server.

6.2 Experimental Setup
I recorded the time taken to execute a given algorithm, as well as the total number of backtracks, iterations, or generations required to find a solution in a Microsoft Excel spreadsheet. I also used Excel to calculate the averages of several runs, to give an overall view of how efficient the system is. All timing was done on the stopwatch function of my wristwatch (a Casio G-Shock), and nothing was running at the time of testing except for background processes and Winamp MP3 player, which did not seem to have an effect on my results. On the O(N), Backtracking, and Look Ahead algorithms, I did 10 executions of each board ranging from four to 10 queens. I also did a larger 20-queen board to see how well the algorithms would perform.

Due to efficiency constraints, I could not complete as much testing for the last three algorithms. So, for the hill-climbing algorithms, I completed 10 executions of each board ranging from four to 10 queens, and dispensed with the larger 20-queen board.

The genetic algorithm turned out to be extremely time consuming. Boards larger than the 6-queen board took longer than one minute per execution. I was under some time constraints during my testing period so I decided to end my testing of the genetic algorithm after the 6-queen board.

6.3 O(N) Algorithm Results
This algorithm executed very quickly, as expected. About the only real speed consideration on this algorithm was the time taken to print the board onto the screen. Boards from four to 10 queens printed out in approximately the same amount of time (0.22 seconds), and the board of twenty took approximately twice as long to print out (0.53 seconds) , though it appeared the calculations took approximately the same amount of time as the previous runs. The drawback to this algorithm, as previously mentioned, was only one solution to each problem was produced. The discrepancies in the times recorded are probably due to human error (not starting and stopping the stop watch at the precise times), rather than the computer taking longer to execute one run than another.

6.4 Backtracking Algorithm Results
The modified backtracking algorithm worked very well in test results, running head to head with the O(N) solution up until the board of size 10 (approximately 0.22 seconds on each run). On the 10-queen board, there was a small deviation in the swiftness at which a solution was delivered (0.22 seconds on O(N) as compared to 0.305 seconds for the look ahead algorithm). On the 20-queen board, there was a significant increase in deviation, with the solution being found by the O(N) algorithm over five times faster (0.524 seconds for the O(N) algorithm, as compared with 2.703 seconds for the backtrack algorithm). Still the results seem to indicate that this algorithm is fairly efficient.

6.5 Look-Ahead Algorithm Results
There were varied results with this algorithm. It appears that on smaller boards (n < 10), the array overhead makes this algorithm run somewhat slower than the previous algorithm.

On larger boards, however, the steps saved from the previous algorithm cause a performance jump. On the 10-queen board, for example, the look-ahead algorithm gave an average execution time of 0.278 seconds, as opposed to the backtracking algorithm result of 0.306 seconds on average. This can also be seen on a greater scale for the 20-queen board where the average total seconds to run was 2.315, compared with the backtracking result of 2.703.

6.6 Next-Ascent Hill-Climbing Results
The next-ascent hill-climbing algorithm had a sharp increase in running time as the number of queens increased. For this reason, I did not conduct a test of the 20-queen board. For the first few runs, the time it took for individual runs was fairly close. On the 8-queen board, variations began to creep in, as runs took anywhere from 0.69 to 3.63 seconds to run. Similar deviation occurs on the 9 and 10-queen boards. The longest run measured occurred on the 10-queen board and took 27.66 seconds to compute an answer. Though the solutions took some time to generate, they were normally of better quality than the previous algorithms, in that unique solutions were generated a majority of the time, instead of finding a particular solution repeatedly.

6.7 Steepest-Ascent Hill-Climbing Results
I was quite surprised by the performance of this algorithm. I thought that by taking the best child out of a neighborhood of children that a solution would be reached faster. Instead it appears as though the next-ascent hill-climber actually performs better in my experimentation. I am not sure of the exact reason for this, unless the randomly picked children moved the solution generation in a completely opposite direction. The only board where this algorithm showed better results than the next-ascent hill-climber was the 9-queen board where the average next-ascent hill-climbing run was 4.901 seconds with an average of 888.9 iterations to find a solution. The steepest-ascent algorithm took 3.641 seconds with an average of 548.5 iterations to generate an answer. On all other boards, the performance of the next-ascent hill-climber either equaled or was better than the performance of the steepest-ascent hill-climber.

6.8 Genetic Search Algorithm Results
The efficiency of the genetic algorithm was far from what I had hoped. I abandoned several of the runs after the time taken to find a solution was in excess of one minute. The average amount of time it took to find a solution to the 4-queen board was 1.367 seconds, which is over six times longer than any of the previous solutions. It also took an average of 66406 generations to converge on an answer. I completed testing on the 4, 5, and 6-queen boards, but about this point was when solutions required in excess of one minute to complete, and I became impatient, and ended the testing prematurely.

7. Conclusions

From all of my testing, I have concluded that the algorithm that performs best in terms of speed is the O(N) solution. The modified-backtracking, and look-ahead backtracking algorithms are a close second, with solutions taking somewhat less than O(N^2) to complete. In addition, the look-ahead algorithm appears to run slightly more efficiently on larger boards than the modified backtracking algorithm. Unfortunately, for these first three algorithms, the quality of the solutions generated is not as good as the last three algorithms, as the same solution is generated on each run of the program.

The efficiency and speed at which the last three algorithms runs, is not as good as the performance of the previous three algorithms, as these latter algorithms are highly dependent on the element of chance. The next-ascent hill-climber runs the best of these three, which is far slower than any of the three previous algorithms. The steepest-ascent hill-climber comes in fifth place, with results averaging to be worse than that of the next-ascent hill-climbing algorithm. In last place is the genetic algorithm, which runs horribly inefficiently for boards where n >= 7. The only consolation for the inefficiency of these algorithms is the fact that different solutions are produced after each run, rather than the same solution as on the first three algorithms.

8. Future Work

In the future, I would like to be able to have a more efficient means of calculating which squares are endangered by a queen. At the moment, my algorithms for finding out such information are somewhat inefficient, which does not allow me to do tests on larger boards (greater than 20).

I would also like to investigate other alternatives for breakout methods for the hill-climbing algorithms, as well as improve the efficiency of the genetic algorithm, due to its poor performance during my evaluations. It might also be interesting to see the effects that viral infection has on the genetic algorithm.

9. References

[1] M. Hall. Solving the N-Queens Problem.

http://www.apl.jhu.edu/~hall/NQueens.html

[2]
R. Sosic and J. Gu. A Polynomial Time Algorithm for the N-Queens Problem. SIGART Bulletin, 1:7-11, 1990.

[3]
R. Sosic and J. Gu. 3,000,000 Queens in Less Than One Minute. SIGART Bulletin, 2:22-24, 1991.

[4]
R. Sosic. A Parallel Search Algoritm for the n-Queens Problem. In Parallel Computing and Transputer Conference, Wollongong, pages 162-172.

IOS Press, 1994.

