

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2011 Trial Higher School Certificate

Mathematics Extension 1

General Instructions

- Reading Time 5 Minutes
- Working time 2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question, if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- All answers to be given in simplified exact form unless otherwise stated.

Total Marks - 84

- Attempt all questions 1-7
- All questions are of equal value.
- Start each new question in a separate answer booklet.
- Hand in your answers in 7 separate bundles: Questions 1, 2, 3, 4, 5, 6 and 7.
- The mark value of each question is given in the right margin.

Examiner: R Boros

Question 1 (12 marks).		Marks.
a)	Solve $x(3-2x) > 0$.	2
b)	Find $\frac{d}{dx}(e^{-x}\cos^{-1}x)$.	2
c)	The remainder when $x^3 + ax^2 - 3x + 5$ is divided by $(x+2)$ is 11. Find the	2
d)	Using the table of standard integrals, find the exact value of:	2
-,	$\int_0^{\frac{\pi}{8}} \sec 2x \tan 2x dx.$	2
e)	Solve for x , $\frac{x^2 - 9}{x} \ge 0$.	2
f)	Find $\int_0^2 \frac{1}{4+x^2} dx$, leaving your answer in exact form.	2

End of Question 1.

Marks.

Question 2 (12 marks).

3

a) Use the substitution $x = \ln u$ to find:

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} \, dx.$$

- b) Use one application of Newton's method to find an approximation to the root of the equation $\cos x = x$ near $x = \frac{1}{2}$. Give your answer correct to 2 decimal places.
- c) The curves $y = e^{2x}$ and $y = 1 + 4x x^2$ intersect at the point (0,1). Find the angle, to the nearest minute, between the 2 curves at this point of intersection.
- Prove that $\frac{2}{\tan A + \cot A} = \sin 2A$.
- e) Find the derivative of $\cos^3 x^\circ$.

End of Question 2.

G

Start a new booklet.

		Marks
Question	n 3 (12 marks).	
	(i) Expand $\cos(\alpha + \beta)$	1
a)		1
	(ii) Show that $\cos 2\alpha = 1 - 2\sin^2 \alpha$	1
	(iii)Evaluate $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$	
b)	If $\alpha = \tan^{-1}\left(\frac{5}{12}\right)$ and $\beta = \cos^{-1}\left(\frac{4}{5}\right)$, calculate the exact value of	2
	$\tan(\alpha-\beta)$.	
	internal	
c)	A(-1,7) and $B(5,-2)$ are 2 points. Point P divides AB in the ratio $k:1$.	
	(i) Write down the coordinates of P in terms of k .	2
	(ii) If P lies on the line $5x-4y-1=0$, find the ratio of AP:PB.	1
, d)	Use mathematical induction to prove that:	3
	$1 \times 1! + 2 \times 2! + 3 \times 3! + + n \times n! = (n+1)! - 1$	3
	where n is a positive integer.	
e)	State the domain of $y = 2\sin^{-1}(1-x)$.	
	().	1

End of Question 3.

Marks.

Question 4 (12 marks).

- a) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are 2 points on the parabola $x^2 = 4ay$.
 - (i) Show that the equation of PQ is given by: $y \frac{1}{2}(p+q)x + apq = 0$ 2
 - (ii) Find the condition that PQ passes through the point (0, -a).
 - (iii) If the focus of the parabola is S and PQ passes through (0,-a), Q prove that $\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a}$.
- b) A family consists of a father, mother, 3 girls and 4 boys.
 - (i) If the family is seated at random along a bench, find the probability that the parents are at the ends, and the boys and girls are seated alternately between them.
 - (ii) If the same family is seated randomly at a round table, find the probability that the parents are separated by exactly two seats, and these seats are both occupied by boys.

Question 4 continued on next page.

Question 4 continued.

Marks.

c) Two circles cut at A and B. A line through A meets one circle at P. Also, BR is a tangent to the circle ABP and R lies on the circle ABQ.

- (i) Copy the diagram showing the above information.
- (ii) Prove that PB||QR.

2

d) One root of $x^3 + px^2 + qx + r = 0$ equals the sum of the two other roots.

Prove that $p^3 + 8r = 4pq$.

End of Question 4.

\$1

Gen

Question 5 (12 marks).

Marks.

- a) The area bounded by the curve $y = \sin^{-1} x$, the y-axis and $y = \frac{\pi}{2}$ is rotated about the y-axis.
 - (i) Show that the volume of the solid so formed is given by:

1

$$\pi \int_0^{\frac{\pi}{2}} \sin^2 y \, dy.$$

(ii) Hence, find the exact volume of this solid.

2

- b) The area of an equilateral triangle is increasing at the rate of $4 \text{ cm}^2/\text{s}$.
 - (i) If x is the length of the side of the triangle, find an expression for the area of the triangle.

1

(ii) Find the exact rate of increase of the side of the triangle, when it has a side length of 2 cm.

2

Question 5 continued on next page.

Marks. Question 5 continued. (i) Find the largest possible domain of positive values for which 1 c) $f(x) = x^2 - 6x + 13$ has an inverse. (ii) Find the equation of the inverse function $f^{-1}(x)$. 2 (i) Prove that $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \ddot{x}$. d) 1 (ii) A cat moving in a straight line has an acceleration given by 2 $\ddot{x} = x(8-3x)$, where x is the displacement in metres from a fixed point O. Initially the cat is at the origin, O, and has a speed of 4 m/s. Find the cat's speed when it is 1 m on the positive side of O.

End of Question 5.

\$1

Gen

Marks.

Question 6 (12 marks).

a) Given $f(x) = 3\cos^{-1}(\sin 2x) - 2\sin^{-1}(\cos 3x)$, show that f(x) is a constant function by finding f'(x).

2

b) From point A, due south of a building, the angle of elevation to the top of the building is 49°. Two hundred metres due east of A, at point B, the angle of elevation is found to be 41° as shown in the diagram below.
Determine, to the nearest metre, the height of the building.

3

Question 6 continued on next page.

Question 6 continued.

Marks.

c) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation

 $\frac{d^2x}{dt^2} = -4x$, where t is the time in seconds.

- (i) Show that $x = a\cos(2t + \beta)$ is a possible equation of motion for the particle, where a and β are constants.
- (ii) The particle is observed at time t = 0 to have a velocity of 2 m/s and a displacement from the origin of 4 m. Find the amplitude of the oscillation.
- (iii)Determine the maximum velocity of the particle.

V

X

d) Using $t = \tan \frac{\theta}{2}$, find the general solution in radians to $\sin \theta - \cos \theta = 1$.

8

End of Question 6.

Marks.

Question 7 (12 marks).

- a) A girl, 1 metre tall, throws a frisbee from a point O, with velocity v m/s at an angle α with the horizontal. It strikes the wall of a building at the highest point B of its trajectory. It takes $1\frac{1}{2}$ seconds to travel from O to B and the wall is 6 metres away from the girl. Taking the coordinate axes from O as shown and $g = 10 \text{ m/s}^2$.
 - (i) Prove that at any time t, the position of the frisbee is given by:

 $x = vt \cos \alpha$ and $y = vt \sin \alpha - 5t^2$.

(ii) Show that $v\cos\alpha = 4$ and $v\sin\alpha = 15$.

2

2

(iii)Determine the initial velocity ν , in exact form, and the angle of projection α to the nearest degree.

2

(iv) Find the height h of the building, correct to 2 decimal places.

1

Question 7 continued on next page.

Question 7 continued.

Marks.

- b) P(x, y) is a point on the curve $y = e^{-x^2}$, where x > 0, O is the origin, and the perpendiculars from P to the x-axis and y-axis meet at A and B respectively.
 - (i) Show that the maximum area of the rectangle *OAPB* is $\frac{1}{\sqrt{2e}}$.
 - (ii) Show that the minimum length of OP is $\sqrt{\frac{1+\ln 2}{2}}$.

End of Question 7. End of Examination.

This

Gen