

2003 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Approved scientific calculators and templates may be used
- Attempt all questions
- Start a new booklet for each question
- A standard integral sheet is included on the back of this paper

Total marks – 120

- All questions should be attempted
- All questions are of equal value

Total Marks –120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question One (15 marks). Use a SEPARATE writing booklet.
(a)
$$\int \sin \theta \cos^5 \theta \, d\theta$$
.
(b) (i) Use partial fractions to find the values of *A*, *B* and *C* if
 $\frac{x^2 - x - 21}{(x^2 + 4)(2x - 1)} = \frac{Ax + B}{x^2 + 4} + \frac{C}{2x - 1}$.
(ii) Hence find $\int \frac{x^2 - x - 21}{(x^2 + 4)(2x - 1)} dx$.
2

(c) Use integration by parts to evaluate
$$\int_{0}^{\frac{\pi}{4}} x \sec^2 x \, dx$$
. 3

(d) By using the substitution
$$t = \tan \frac{\theta}{2}$$
, show that. $\int_{0}^{\frac{\pi}{3}} \sec \theta \, d\theta = \ln(2 + \sqrt{3})$ 5

2

Question Two(15 marks). Use a SEPARATE writing booklet.

(a) Let
$$z = -24 + 28i$$
, and $w = 3 + 5i$.

(i) Find
$$z + 3w$$
. 1

(ii) Find $\arg(z+3w)$. Give your answer in radians correct to 3 significant figures. 2

(iii) Express
$$\frac{z}{w}$$
 in the form $a + ib$. 2

(b) Express $1-i\sqrt{3}$ in modulus-argument form.

(c) (i) Sketch on an Argand diagram the locus defined by $\arg(z+2i) = \frac{3\pi}{4}$ 2

(ii) Let
$$z_1 = 1 + i$$
 and $z_2 = 2 - i$. Sketch on an Argand diagram the locus defined by $2 \arg\left(\frac{z - z_2}{z - z_1}\right) = \frac{\pi}{2}$.

(d) In an Argand diagram the point A represents the complex number $z = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$.

(i)	Let <i>C</i> represent the number <i>w</i> , where $w = 2iz$. Find <i>w</i> in the form $a + ib$.	2
(ii)	The point <i>B</i> completes the rectangle <i>COAB</i> , where <i>O</i> is the origin Let <i>u</i> be the number represented by <i>B</i> . Find <i>u</i> in the form $a + ib$.	1

(iii) Find the value of
$$|w-u| \times |z-u|$$
. 1

Question Three (15 marks).Use a SEPARATE writing booklet.

(a) Let
$$\alpha$$
, β and γ be the roots of $x^3 + 2x^2 - 2 = 0$.

- (i) Find the value of $\alpha^2 + \beta^2 + \gamma^2$. 2
- (ii) Form the equation whose roots are $\alpha 1$, $\beta 1$ and $\gamma 1$. 2
- (b) Let P(x) be a polynomial.
 - (i) Prove that if α is a double zero of P(x), then $P'(\alpha) = 0$. 2
 - (ii) Hence find the roots of the equation $12x^3 + 44x^2 5x 100 = 0$, **2** given that two of the roots are equal.
- (c) Let z_1 and z_2 be complex numbers.

(i) Prove that
$$|z_1|^2 = z_1 \overline{z_1}$$
. **1**

(ii) By using the fact that
$$\overline{z_1 \times z_2} = \overline{z_1} \times \overline{z_2}$$
, prove that $\overline{(z_1 \times \overline{z_2})} = \overline{z_1} \times z_2$. **1**

(iii) Hence prove that
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1 \overline{z_2})$$
 3

(iv) Hence prove that
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 2

Question Four (15 marks). Use a SEPARATE writing booklet.

The graph below is $y = e^{-x} \sin x$

(i) Find the coordinates of *D*, the absolute maximum of $y = e^{-x} \sin x$. **3**

(ii) Prove that the shaded area
$$A_1$$
 is equal to $\frac{e^0 + e^{-\pi}}{2}$.

(iii) Prove that the shaded area
$$A_2$$
 is equal to $\frac{e^{-\pi} + e^{-2\pi}}{2}$. 2

(iv) Write down the value of
$$A_3$$
. 1

(v) Show that
$$\frac{A_2}{A_1} = e^{-\pi}$$
. 2

(vi) Given that the shaded areas form a geometric progression, find the limiting sum of 3 such areas as $x \to \infty$.

Question Five (15 marks). Use a SEPARATE writing booklet.

The point
$$P\left(ct,\frac{c}{t}\right)$$
 lies on the hyperbola $xy = c^2$.

(i)	Sketch the hyperbola and mark on it the point <i>P</i> where $t \neq 1$.	1
(ii)	Derive the equation of the tangent at <i>P</i> .	2
(iii)	Prove that the equation of the normal at <i>P</i> is given by $y = t^2 x + \frac{c}{t} - ct^2$.	2
(iv)	The tangent at <i>P</i> meets the line $y = x$ at <i>T</i> . Find the coordinates of <i>T</i> .	3

(v) The normal at *P* meets the line y = x at *N*. Find the coordinates of *N*. **3**

(vi) Prove that
$$OT \times ON = 4c^2$$
 4

Question Six (15 marks). Use a SEPARATE writing booklet.

The ellipse *E* has equation
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
. *P* is a point on *E*.

(i)	Calculate the eccentricity	1
(ii)	Write down the coordinates of the foci S and S' .	2
(iii)	Write down the equation of each directrix.	1
(iv)	Sketch E showing all important features.	1
(v)	Prove that the sum of the distances $SP + S'P$ is independent of P.	3
(vi)	Derive the equation of the normal at <i>P</i> .	3
(vii)	Prove that the normal at P bisects $\angle SPS'$.	4

Question Seven (15 marks). Use a SEPARATE writing booklet.

(a) The curve
$$f(x) = x + 6x^3$$
 is defined over the domain $\frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$.

(i)	Show that this function has no turning points.	2
(ii)	Show that $f(x) = x + 6x^3$ is an odd function.	2
(iii)	Draw a neat sketch of the function, about one third of a page in size.	1
(iv)	On the same diagram, sketch the solid formed when $y = f(x)$ is rotated about the y-axis.	1
(v)	Use the method of cylindrical shells to find the exact volume of this solid.	4
(b)	A solid is constructed on a circular base of radius 6cm. Parallel cross-sections	5

(b) A solid is constructed on a circular base of radius 6cm. Parallel cross-sections are right-angled isosceles triangles with the hypotenuse in the base of the solid. Find the volume of the solid.

Question Eight (15 marks). Use a SEPARATE writing booklet.

(a) (i) Prove that
$$\cot \frac{\alpha}{2} - \cot \alpha = \csc \alpha$$
 3

(ii) Hence find a simplified expression for
$$\sum_{r=1}^{n} \operatorname{cosec}(2^{r} \alpha)$$
.
(b) $\begin{pmatrix} y \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ n-1 \\ n \end{pmatrix}$

The graph above is of the curve $y = \ln x$.

(i) Find
$$\int_{1}^{n} \ln x \, dx$$
 3

(ii) Prove that the sum of the areas of the rectangle is given by $\ln(n-1)!$. 2

(iii) What can you say about your answer in (ii) compared to your answer in (i)? 1

(iv) Prove that for any integer
$$n > 1$$
, $\ln\left(\frac{n^n}{(n-1)!}\right) > n-1$. 3