2003
HIGHER SCHOOL CERTIFICATE

Mathematics
 Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Approved scientific calculators and templates may be used
- Attempt all questions
- Start a new booklet for each question
- A standard integral sheet is included on the back of this paper

Total marks - 120

- All questions should be attempted
- All questions are of equal value

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks
Question One (15 marks). Use a SEPARATE writing booklet.
(a) $\int \sin \theta \cos ^{5} \theta d \theta$.

$$
\frac{x^{2}-x-21}{\left(x^{2}+4\right)(2 x-1)}=\frac{A x+B}{x^{2}+4}+\frac{C}{2 x-1} .
$$

(ii) Hence find $\int \frac{x^{2}-x-21}{\left(x^{2}+4\right)(2 x-1)} d x$.
(c) Use integration by parts to evaluate $\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x$.
(d) By using the substitution $t=\tan \frac{\theta}{2}$, show that. $\int_{0}^{\frac{\pi}{3}} \sec \theta d \theta=\ln (2+\sqrt{3})$

Question Two(15 marks). Use a SEPARATE writing booklet.
(a) Let $z=-24+28 i$, and $w=3+5 i$.
(i) Find $z+3 w$.
(ii) Find $\arg (z+3 w)$. Give your answer in radians correct to 3 significant figures.
(iii) Express $\frac{Z}{W}$ in the form $a+i b$.
(b) Express $1-i \sqrt{3}$ in modulus-argument form.
(c) (i) Sketch on an Argand diagram the locus defined by $\arg (z+2 i)=\frac{3 \pi}{4}$
(ii) Let $z_{1}=1+i$ and $z_{2}=2-i$. Sketch on an Argand diagram the locus defined by

$$
\arg \left(\frac{z-z_{2}}{z-z_{1}}\right)=\frac{\pi}{2} .
$$

(d) In an Argand diagram the point A represents the complex number $z=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$.
(i) Let C represent the number w, where $w=2 i z$. Find w in the form $a+i b$.
(ii) The point B completes the rectangle $C O A B$, where O is the origin

Let u be the number represented by B. Find u in the form $a+i b$.
(iii) Find the value of $|w-u| \times|z-u|$.

Question Three (15 marks).Use a SEPARATE writing booklet.
(a) Let α, β and γ be the roots of $x^{3}+2 x^{2}-2=0$.
(i) Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(ii) Form the equation whose roots are $\alpha-1, \beta-1$ and $\gamma-1$.
(b) Let $P(x)$ be a polynomial.
(i) Prove that if α is a double zero of $P(x)$, then $P^{\prime}(\alpha)=0$.
(ii) Hence find the roots of the equation $12 x^{3}+44 x^{2}-5 x-100=0$,
given that two of the roots are equal.
(c) Let z_{1} and z_{2} be complex numbers.
(i) Prove that $\left|z_{1}\right|^{2}=z_{1} \overline{z_{1}}$.

1
(ii) By using the fact that $\overline{z_{1} \times z_{2}}=\overline{z_{1}} \times \overline{z_{2}}$, prove that $\overline{\left(z_{1} \times \overline{z_{2}}\right)}=\overline{z_{1}} \times z_{2}$.

1
(iii) Hence prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)$
(iv) Hence prove that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$

Question Four (15 marks). Use a SEPARATE writing booklet.

The graph below is $y=e^{-x} \sin x$

(i) Find the coordinates of D, the absolute maximum of $y=e^{-x} \sin x$.
(ii) Prove that the shaded area A_{1} is equal to $\frac{e^{0}+e^{-\pi}}{2}$.
(iii) Prove that the shaded area A_{2} is equal to $\frac{e^{-\pi}+e^{-2 \pi}}{2}$.
(iv) Write down the value of A_{3}.
(v) Show that $\frac{A_{2}}{A_{1}}=e^{-\pi}$.
(vi) Given that the shaded areas form a geometric progression, find the limiting sum of 3 such areas as $x \rightarrow \infty$.

Question Five (15 marks). Use a SEPARATE writing booklet.
The point $P\left(c t, \frac{c}{t}\right)$ lies on the hyperbola $x y=c^{2}$.
(i) Sketch the hyperbola and mark on it the point P where $t \neq 1$.
(ii) Derive the equation of the tangent at P.
(iii) Prove that the equation of the normal at P is given by $y=t^{2} x+\frac{c}{t}-c t^{2}$.
(iv) The tangent at P meets the line $y=x$ at T. Find the coordinates of T.
(v) The normal at P meets the line $y=x$ at N. Find the coordinates of N.
(vi) Prove that $O T \times O N=4 c^{2}$

Question Six (15 marks). Use a SEPARATE writing booklet.
The ellipse E has equation $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1 . P$ is a point on E.
(i) Calculate the eccentricity 1
(ii) Write down the coordinates of the foci S and S^{\prime}. 2
(iii) Write down the equation of each directrix. 1
(iv) Sketch E showing all important features. 1
(v) Prove that the sum of the distances $S P+S^{\prime} P$ is independent of P. 3
(vi) Derive the equation of the normal at P. 3
(vii) Prove that the normal at P bisects $\angle S P S^{\prime}$.

Question Seven (15 marks). Use a SEPARATE writing booklet.
(a) The curve $f(x)=x+6 x^{3}$ is defined over the domain $\frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$.
(i) Show that this function has no turning points.
(ii) Show that $f(x)=x+6 x^{3}$ is an odd function.
(iii) Draw a neat sketch of the function, about one third of a page in size.
(iv) On the same diagram, sketch the solid formed when $y=f(x)$ is rotated about the y-axis.
(v) Use the method of cylindrical shells to find the exact volume of this solid.
(b) A solid is constructed on a circular base of radius 6 cm . Parallel cross-sections are right-angled isosceles triangles with the hypotenuse in the base of the solid. Find the volume of the solid.

Question Eight (15 marks). Use a SEPARATE writing booklet.
(a) (i) Prove that $\cot \frac{\alpha}{2}-\cot \alpha=\operatorname{cosec} \alpha$
(ii) Hence find a simplified expression for $\sum_{r=1}^{n} \operatorname{cosec}\left(2^{r} \alpha\right)$.
(b)

The graph above is of the curve $y=\ln x$.
(i) Find $\int_{1}^{n} \ln x d x$
(ii) Prove that the sum of the areas of the rectangle is given by $\ln (n-1)$!.
(iii) What can you say about your answer in (ii) compared to your answer in (i)?
(iv) Prove that for any integer $n>1, \ln \left(\frac{n^{n}}{(n-1)!}\right)>n-1$.

