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Q1
Integration.

1a Let u = ln x. Then du = dx/x and so
∫

ln x

x
dx =

∫

udu = u2/2 + c

= (ln x)2/2 + c

1b I = xe2x dx. Use integration by parts;
u = x, dv = e2x dx

du = dx, v = e2x/2

So, I =
∫

udv = uv −
∫

vdu (Formula)
I = xe2x/2−

∫

e2x/2 dx = xe2x/2−e2x/4+c

1c As there is an x2 term on top and bot-
tom we manipulate to form a ’1’ as shown,

I =

∫

x2

1 + 4x2
dx

=
1

4

∫

4x2 + 1

1 + 4x2
dx− 1

16

∫

1
1
4 + x2

dx

=
1

4
x− 1

16
.2.tan−12x+ c

=
x

4
− 1

8
tan−12x+ c

1d I =

∫ 5

2

x− 6

x2 + 3x− 4
dx

=

∫ 5

2

a

x+ 4
+

b

x− 1
dx

=

∫ 5

2

a(x− 1) + b(x+ 4)

(x+ 4)(x− 1)
dx

So a(x− 1) + b(x+ 4) ≡ x− 6 and hence
a+b = 1 and 4b−a = −6. Solving these two
simultaneously we obtain, a = 2, b = −1
and hence,

I =

∫ 5

2

2

x+ 4
− 1

x− 1
dx

= 2 ln(x+ 4)− ln(x− 1) |52
= 2 ln 9− ln 4− (2 ln 6− ln 1)
= 4 ln 3− 2 ln 2− 2 ln 2− 2 ln 3
= 2 ln 3− 4 ln 2

or ln

(

9

16

)

1e

I =

∫

√
3

1

1

x2
√
1 + x2

dx

Use the substitution u = 1/x2 = x−2. Then
du = −2x−3dx and when x =

√
3 =⇒ u =

1/3, when x = 1 =⇒ u = 1/12 = 1 so we
have

I = −1

2

∫

x3 du

x2
√

1 + 1/u
= −1

2

∫

du
√

1
x2 (1 + 1/u)

= −1

2

∫ 1/3

1

du√
u+ 1

=
1

2

∫ 1

1/3

(u+ 1)−1/2 du

= (u+ 1)1/2
∣

∣

∣

1

1/3
=

√
2− 2/

√
3

Q2
Complex Numbers.

2a i9 = (i2)4i = (−1)4i = i = 0+ 1i (in the
form a+ib).

2b
−2 + 3i

2 + i
× 2− i

2− i
(to ’realise’ the denom-

inator)

=
−4 + 6i+ 2i− 3i2

4− i2

=
8i− 1

5
= −1

5
+

8

5
i

2c

2.c.i 2.c.ii 2.c.iii
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2d

2e 2.e.i We’re solving z5 = −1. Assume
the form, z = r cis θ = r cos θ + i sin θ.

∴ r5( cis θ)5 = −1 =⇒ r5 cis 5θ = −1 (By
De Moivre’s theorem)

∴ r = 1 and cis 5θ = −1 = cis (π + 2πn)
where n ∈ ZZ.

5θ = π + 2πn

θ =
(2n+ 1)π

5
where n ∈ ZZ. (this is all of

them)

The five with principal arguments are for
n = 0,±1,±2 we have the five roots,

z = cis π
5 , cis 3π

5 , cis −π
5 , cisπ, cis −3π

5

and these are equally spaced around the cir-
cle differing in arguments by 2π/5,

2.e.ii

2f 2.f.i

Solve (x+ iy)2 = 3 + 4i
x2 − y2 + 2xyi = 3 + 4i
∴ x2 − y2 = 3 and 2xy = 4
Combining these by eliminating y we have,

x2 − 4/x2 = 3
x4 − 3x2 − 4 = 0 (quadratic in x2

x2 = (3±
√
9 + 16)/2 = (3± 5)/2 = 4,−1

As x is real then x = ±2, so y = ±2/2 = ±1
and therefore the two square roots are

z = ±2 ± i.1 = ±(2 + i). (Check this by
squaring it, you should get 3 + 4i.)

2.f.ii We use the otherwise method; notice
that z = 1 is a zero of z2 + iz − 1 − i ,
dividing out we get,

z + i+ 1
z − 1 )z2 + iz − 1− i

z2 − z

(i+ 1)z − 1− i
(i+ 1)z − (1 + i)

0
Thus the equation becomes, (z− 1)(z+ i+
1) = 0 and so the solutions are

z = 1,−i− 1

c©2009 by Jan Hansen. All rights reserved. 2 janh@hansendata.com.au
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Q3
3a Graphs.

3.a.i 3.a.ii 3.a.iii

Q3a y = f(x)

4

−3

1

x

y

Q3a (i) y =
1

f(x)

4

−1
3

1

x

y

Q3a (ii) y = f(x)2

4

−3

1

x

y

Q3a (iii) y = f(x2)

42

−3

1

x

y

3b Graphs.

x2+2xy+3y2 = 18. Differentiating implic-
itly regarding y as a function of x,
2x+ 2y + 2xy′ + 6y.y′ = 0
2y′(x+ 3y) = −2(x+ y)

y′ =
−x− y

x+ 3y
So y′ = 0 (for stat pts)

=⇒ −x− y = 0 =⇒ y = −x, and substi-
tution back into the equation gives,

x2 − 2x2 + 3x2 = 18
2x2 = 18
x = ±3
y = ∓3 and hence the stat points are
(−3, 3), (3,−3) (and we have checked that
at these points, x+ 3y 6= 0]

3c Polynomials.

We have, P (x) = x3+ax2+bx+5, a, b ∈ IR.
If (x−1)2 is a factor then by theory, P (1) =
P ′(1) = 0 and P ′(x) = 3x2 +2ax+ b, so we

c©2009 by Jan Hansen. All rights reserved. 3 janh@hansendata.com.au
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have 1 + a+ b+ 5 = 0 and 3 + 2a+ b = 0.
∴ b = −6−a =⇒ 3+2a+−6−a = 0 =⇒
a = 3 =⇒ b = −6− 3 = −9

3d Volumes–cylindrical shells.

From theory we have the volume of the
infinitesimal shell δV = π(r22 − r21)h =
(r2 + r1)(r2 − r1)(y2 − y1) and r2 = x+ δx,
r1 = x

δV = π(x+ x+ δx)(x+ δx− x)(y2 − y1)
δV = 2πx(x+ 1− (x− 1)2)δx

(Ignoring δx2 terms)

V = 2π

∫ 3

0

x(x + 1)− x(x− 1)2 dx (Limits

were obtained as; x+ 1 = x2 + 1− 2x =⇒
x2 − 3x = 0 =⇒ x = 0, 3)

V = 2π

∫ 3

0

x2 + x− x3 + 2x2 − x dx

V = 2π

∫ 3

0

3x2 − x3 dx = 2π
[

x3 − x4/4
]3

0

= 2π(27− 81/4) =
27π

2
units 3

Q4
4a Conics.

4.a.i

Get y′:
2x

a2
+

2yy′

b2
= 0

=⇒ y′ = − b2x

a2y

∣

∣

∣

∣

( at P )
= −b2x0

a2y0
.

So the normal gradient is the negative recip-
rocal of the tangent gradient, and we have

y − y0 =
a2y0
b2x0

(x− x0) NORMAL

4.a.ii When y = 0 (on x axis) then

−y0 =
a2y0
b2x0

(x− x0)

Solving this for x gives, x =
(a2 − b2)x0

a2
Recall that for an ellipse b2 = a2(1−e2) =⇒
b2 = a2−a2e2 =⇒ a2−b2 = a2e2 and there-
fore we have

x =
a2e2x0
a2

= e2x0 and so N(e2x0, 0) as re-

quired.//

4.a.iii By the focus directrix definition we
have PS = ePM and PS ′ = ePM ′. There-
fore,

PS

PS ′ =
ePM

ePM ′ =
PM

PM ′

and in terms of the coordinates we have
PS

PS ′ =
a/e− x0
x0 + a/e

=
a− ex0
ex0 + a

=
e(a− ex0)

e(ex0 + a)
=

NS

NS ′

(since NS = ae − e2x0 = e(a − ex0) and
NS ′ = e2x0 + ae = e(ex0 + a) )

4.a.iv We have α = ∠S ′PN and β =
∠NPS and by the sine rule we have

PS

sin∠PNS
=

NS

sin β
and

PS ′

sin∠PNS ′ =
NS ′

sinα
So by (iii) since PS/NS = PS ′/NS ′ then
we have

c©2009 by Jan Hansen. All rights reserved. 4 janh@hansendata.com.au
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sin∠PNS

sin β
=

sin∠PNS ′

sinα
but ∠PNS ′ = π−∠PNS (since ∠SNS ′ is a
straight angle) and since sin(π−∠PNS) =
sin∠PNS we have
sin∠PNS

sin β
=

sin(π − ∠PNS)

sinα
=

sin∠PNS

sinα
and therefore

1

sin β
=

1

sinα
=⇒ sinα = sin β and as

α, β < π/2 (by construction) then we con-
clude that α = β as required.

4b Mechanics.

4.b.i

Resolve vertical forces:
T cosα +N sinα = mg . . . (1)
Resolve horizontal forces:
T sinα−N cosα = mrω2 . . . (2)

4.b.ii (1)× cosα + (2)× sinα gives

T = mg cosα +mrω2 sinα
= m(g cosα + rω2 sinα) as required.

(1)× sinα− (2)× cosα gives

N = mg sinα−mrω2 cosα
= m(g sinα− rω2 cosα)

(For both calculations we used cos2 α +
sin2 α = 1)

4.b.iii

If T = N then

m(g cosα + rω2 sinα) =
m(g sinα− rω2 cosα)
g cosα + rω2 sinα = g sinα− rω2 cosα

ω2 =
g

r
× sinα− cosα

sinα + cosα

=
g

r

(

tanα− 1

tanα + 1

)

as required.//

(here we dividing top/bottom by cosα and
using tanα = sinα/ cosα)

4.b.iv

We know that ω2 > 0 and so the right hand
side, in (iii), must be positive also.

Hence
tanα− 1

tanα + 1
> 0

∴ tanα > 1 (since α > 0 and so
tanα + 1 > 0)

∴ α > tan−11 and hence α > π/4 and hence
as obviously α < π/2 we arrive at

π/4 < α < π/2

Q5
5a Circle Geometry.

5.a.i

c©2009 by Jan Hansen. All rights reserved. 5 janh@hansendata.com.au
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∠ADB = π/2 (angle subtended by a diam-
eter AB)
∠KXD = ∠Y XB (vertically opposite an-
gles are equal)
∆KDX|||∆BYX ( AA - two correspond-
ing angles are equal )
Hence the third corresponding angle is also
equal and thus
α = ∠AKY = ∠XKD = ∠XBY =
∠ABD = β, as required.

5.a.ii

We know α = β (corresponding angles in
the similar triangles of part (i) are equal)

Also, ∠DCA = ∠DBA = α (angles on the
circle subtended by same segment AD are
equal)

∴ DKCX is a cyclic quadrilateral as the
interval DY subtends the same angle α at

K and at B.

(Circle result: Angles on circumference of
a circle subtended by same segment are
equal)

5.a.iii

Firstly from the right-angled triangle
∆XY B we know that γ + β = π/2.
But α = β =⇒ γ + α = π/2.
Also, ∠ACB = π/2 (as AB is a diameter).
Hence, ∠KCB = ∠KCA + ∠ACB = α +
γ + π/2 = π/2 + π/2 = π.
Thus ∠KCB = π is a straight angle and
therefore K,C,B are on the same straight
line and so are collinear, as required.

5b Integration.

5.b.i

In =
∫ 1

0 x2n+1ex
2

dx. First we will use a sim-
ple substitution and then we use integration
by parts to finish.

Let w = x2, then dw = 2x dx and the inte-
gral becomes

In =
1

2

∫ 1

0

wnew dw. Now for integration by

parts using the formula
∫

u dv = uv−
∫

v du

we choose u = wn and dv = ew dw.
Then du = nwn−1 dw and v = ew, so that

In =
1

2
wnew

∣

∣

∣

∣

1

0

− n

∫ 1

0

wn−1ew dw

=
1

2
(1n.e1 − 0)− nIn−1

=
e

2
− nIn−1 as required.

5.b.ii

I2 = e/2− 2I1
I1 = e/2− 1.I0

I0 = 0.5

∫ 1

0

w0ew dw = 0.5 ew|10 =
e− 1

2
Thus I1 = e/2 − (e − 1)/2 = 1/2 and
I2 = e/2− 2.1/2 = e/2− 1

c©2009 by Jan Hansen. All rights reserved. 6 janh@hansendata.com.au
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5c Graphs.

5.c.i

f(x) =
ex − e−x

2
− x

f ′(x) =
ex − (−1)e−x

2
− 1 =

ex + e−x

2
− 1

f ′′(x) =
ex − e−x

2

f ′′′(x) =
ex + e−x

2
5.c.ii f ′′′(x) > 0 since ex > 0, e−x > 0 for
all x

Also, f ′′(0) = 0 and so for x > 0 the func-
tion f ′′(x) is increasing for all x > 0 (since
the sign of f ′′′ tells us how f ′′ is changing),
whilst being equal to zero at x = 0, hence
f ′′(x) > 0 for x > 0. [It is also obvious
graphically if you graph and combine y = ex

and y = e−x.]

5.c.iii

By a similar argument as in (ii)

f ′(0) = 0 and f ′′(x) > 0 for x > 0 (estab-
lished in part (i))

Hence f ′(x) is an inceasing function so that
f ′(x) > 0 for x > 0 ( as it started at zero
when x = 0)

Hence f(x) is an increasing function for
x > 0, and since it starts at x = 0 (ie
f(0) = 0), then we must have f(x) > 0
for x > 0 as required.

Q6
6a

The cross sectinal area is

A(x) = 2y(4− x)
= 2(4− x)

√
4− x = (4− x)3/2

V =
∫ 4

0 A(x) dx

= 2
∫ 4

0 (4− x)1.5 dx = 2
[

−2
5(4− x)2.5

]4

0

= (−4/5)[0− 45/2] =
4

5
× 32 = 128/5 units2

6b 6.b.i

Assume that α is a zero we have P (α) =
α3 + qα2 + qα + 1 = 0.

Now, P (
1

α
) =

1

α3
+

q

α2
+

q

α
+ 1

=
1

α3
(1 + qα + qα2 + α3)

=
1

α3
P (α)

=
0

α3

= 0
and hence 1

α is a zero.//

6.b.ii

Since α is not real and the coefficients of P
are real then by theory the roots must occur
in complex conjugate pairs, say, α, ᾱ.

Q6.b.ii.1

Product of roots is α× ᾱ× (−1) = −d/a =
−1/1 = −1, and hence

|α|2 = 1 =⇒ |α| = 1
(since for any complex number z, |z| ≥ 0
and zz̄ = |z|2).

Q6.b.ii.2

Sum roots is α+ᾱ+(−1) = −b/a = −q/1 =
−q =⇒ α + ᾱ = 1− q.

So Re(α) =
1− q

2

(since for a complex number z, z + z̄ =
2Re(z) )

6c 6.c.i

PQ2 = OP 2 − r2 (Pythagoras)

PQ2 = x2+ y2− r2 (using distance formula
on OP )

Finaly, PQ =
√

x2 + y2 − r2.

6.c.ii

PQ = PR =⇒
√

x2 + y2 − r2 = c − x
(PR is just the difference in x coordinates)

∴ x2 + y2 − r2 = c2 + x2 − 2xc
y2 = r2 + c2 − 2xc as required.

c©2009 by Jan Hansen. All rights reserved. 7 janh@hansendata.com.au
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6.c.iii

We put the parabola into standard form to
read off the vertex and focal length;

y2 = −2cx+ r2 + c2

= −2c
(

x− (r2+c2)
2c

)

This the focal length is a = 2c/4 = c/2 and

the vertex is
(

r2+c2

2c , 0
)

.

Therefore, the focus is

S
(

r2+c2

2c − c
2 , 0

)

= S
(

r2

2c , 0
)

6.c.iv The directrix of the locus is
x = r2+c2

2c + c/2 = r2+2c2

2c .

But we know that PM = PS (definition of
parabola, with M on directrix)
and PQ = PR (from the locus definition)

Hence,

|PS − PQ | = |PM − PR |
(difference in the x-values of points M and
R)

=

∣

∣

∣

∣

r2 + 2c2

2c
− c

∣

∣

∣

∣

which is independant of x

as required.

Q7
7a 7.a.i Q7.a.i.1

ẍ = g − rv

∴ v
dv

dx
= g − rv

(since by theory ẍ =
d

dx

(

v2/2
)

= v
dv

dx
)

∴ v
dv

dx
=

g − rv

v
dx

dv
=

v

g − rv

x =

∫

v

g − rv
dv

= −1

r

∫ −rv

g − rv
dv

= −1

r

∫

g − rv

g − rv
− g

g − rv
dv

= −1

r
[v +

g

r
ln |g − rv|] + c

Using intital conditions,

0 = 0− (g/v2) ln g + c =⇒ c =
g

r2
ln g

Updating x,

x = −1

r
[v +

g

r
ln |g − rv|] + g

r2
ln g

=
g

r2
ln

(

g

g − rv

)

− v

r

Q7.a.i.2

Hence.

L =
9.8

0.22
ln

(

9.8

9.8− 0.2× 30

)

− 30

0.2
= 82m

(2 sf)

7.a.ii

x = e−t/10(29st − 10ct) + 92 (where st =
sin t, ct = cos t)
ẋ = −e−t/10(29st − 10ct)/10 + e−t/10(29ct +
10st)
= e−t/10(29ct + 10st − 29st/10 + ct)
= e−t/10(30ct + 71st/10)

Solve for t where ẋ = 0

30ct + 71st/10 = 0

30ct = −71st/10

tan t = −300/71
=⇒ t = nπ − tan−1(300/71) and we need
t > 0 so require that

nπ > tan−1(300/71)
=⇒ n > tan−1(300/71)/π = 0.426...
=⇒ n ≥ 1.

Choosing n = 1 we have t = π −
tan−1(300/71)/ = 1.80 (2dp)

Hence x = e−1.8/10(29 sin 1.8− 10 cos 1.8) +
92 = 25.487 + 92 = 117.487
and as he is 2m tall his head reaches down
a distance of 117.487 + 2 = 119.487m and

c©2009 by Jan Hansen. All rights reserved. 8 janh@hansendata.com.au



h
a
n
se
n
d
a
ta
.c
o
m
.a
u

HSC 2009 Mathematics Extension 2 Solutions - Jan Hansen

so he stays dry. (i.e. out of the water).

7b

Let z = cos θ + i sin θ.

7.b.i

Using De Moivre’s Theorem we have

zn = cosnθ + i sinnθ and
z−n = cos(−nθ) + i sin(−nθ)
= cosnθ−i sinnθ (since sine is an odd func-
tion and cosine is even function)

So, zn + z−n = cosnθ + i sinnθ + cosnθ −
i sinnθ
= 2 cosnθ as required.

7.b.ii
By part (i), with n = 1 we have, z + z−1 = 2 cos θ, and
hence
(z + z−1)2m = (2 cos θ)2m and expansion of the left side
using the binomial theorem gives

(z + z−1)2m =
2m
∑

0

(

2m

r

)

z2m−r.z−r

=

2m
∑

0

(

2m

r

)

z2m−2

=

(

2m

0

)

z2m +

(

2m

1

)

z2m−2 +

(

2m

2

)

z2m−4 +
(

2m

3

)

z2m−6 + · · ·+
(

2m

2m− 1

)

z−2m+2 +

(

2m

2m

)

z−2m

But
(

2m
0

)

=
(

2m
2m

)

,
(

2m
1

)

=
(

2m
2m−1

)

,
(

2m
2

)

=
(

2m
2m−2

)

, ...

and so

(z + z−1)2m =

(

2m

0

)

(z2m + z−2m) +

(

2m

1

)

(z2m−2 + z−2m+2) +

(

2m

2

)

(z2m−4 + z−2m+4) + · · · +

+

(

2m

m− 1

)

(z2 + z−2) + +

(

2m

m

)

z0

= 2

[(

2m

0

)

cos 2mθ +

(

2m

1

)

cos 2(m− 1)θ+

(

2m

2

)

cos 2(m−2)θ+ · · · +
(

2m

m− 1

)

cos 2θ

]

+

(

2m

m

)

as

required.

7.b.iii Integrating the expression in (ii) and manipu-
lating the contants we have
∫ π/2
0 cos2m θ θ

= 2−2m+1

[

sin 2mθ

2m
+

(

2m

1

)

sin(2m− 2)θ

2m− 2

+

(

2m

2

)

sin(2m− 4)θ

2m− 4
+ · · ·+

(

2m

m− 1

)

sin 2θ

2

]π/2

0

+

2−2m

(

2m

m

)

θ

∣

∣

∣

∣

π/2

0

= 2−2m+1 [0] + 2−2m

(

2m

m

)

π

2

=
π

22m+1

(

2m

m

)

Q8
8a 8.a.i Start
1

2
(cot θ/2− tan θ/2)

=
1

2

(

cos θ/2

sin θ/2
− sin θ/2

cos θ/2

)

=
1

2

(

cos2 θ/2− sin2 θ/2

sin θ/2 cos θ/2

)

=
cos θ

sin θ
(using double angle formulas)

= cot θ and hence we are done as
1

2
(cot θ/2− tan θ/2) = cot θ is equivalent to the identity

we are asked to prove.
8.a.ii
We are required to prove:

n
∑

r=1

1

2r−1
tan

x

2r
=

1

2n−1
cot

x

2n
− 2 cotx

Firstly, for n = 1,

LHS =
1

21−1
. tan

x

2
= tan

x

2

RHS =
1

20
cotx/2− 2 cotx

= cotx/2− 2 cotx
= cotx/2− (cotx/2− tanx/2) by part (i).
= tanx/2 = LHS
Hence the statement is true for n = 1.

Secondly, we prove the statement true for n = k + 1
whenever the statement is true for n = k. So we assume
that

k
∑

r=1

1

2r−1
tan

x

2r
=

1

2k−1
cot

x

2k
− 2 cotx . . . (∗)

Now assuming (*) we prove that

k+1
∑

r=1

1

2r−1
tan

x

2r
=

1

2k
cot

x

2k+1
− 2 cotx . . . (∗∗)

Start, LHS =
k+1
∑

r=1

1

2r−1
tan

x

2r

c©2009 by Jan Hansen. All rights reserved. 9 janh@hansendata.com.au
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=
1

2k−1
cot

x

2k
− 2 cotx+

1

2k
tan

x

2k+1
(by induction hy-

pothesis)

=
1

2k

(

cot
x

2k
+ tan

x

2k+1

)

− 2 cotx

=
1

2k
cot

x

2k+1
− 2 cotx

= RHS and hence the statement is true for n = k + 1
when it is true for n = k.

Finally, we conclude that by induction the statement
is true for all positive integers.

Remark: This is enough of a conclusion to a proof

by induction—contrary to the advice of many

textbooks. A reference is the 2007 examiners report,

http://www.boardofstudies.nsw.edu.au/

hsc_exams/exam-papers-2007/pdf_doc/

mathematics-ext2-notes-07.pdf. The 2/3

unit syllabus confirms this view also - see page 47.

JSH

8.a.iii Firstly a preliminary, Recall that

lim
x→0

x

tanx
= 1

Hence

lim
x→0

x
2n

tan x
2n

= 1

We have,
∑n

r=1
1

2r−1 tan
x
2r

=
1

2n−1
cot

x

2n
− 2 cotx

=
2

x

x
2n

tan x
2n

− 2 cotx

=
2

x
− 2 cotx by the above result.

8.a.iv
Substituting x = π/2 into the result of part (iii) we have

tanπ/4 +
1

2
tanπ/8 +

1

4
tanπ/16 + · · ·

=
2
π
2

− 2 cot
π

2

=
4

π
− 0

=
4

π
8b
Area under curve is
∫ n
n−1

1
x = lnn− lnn− 1 = ln n

n−1

Define AL =lower rectangle area= 1× 1/n = 1/n
Define AU =upper rectangle area= 1 × 1/(n − 1) =
1/(n− 1)

Ths since by construction, AL < A < AU then we have
1/n < ln n

n−1 < 1/(n− 1) and exponentiating (i.e. take

the power of e) and use the fact that elnx = x to get

e
1
n < n

n−1 < e
1

(n−1)

e1 <
(

n
n−1

)n
< e

n

(n−1) (by taking power of n)

e
−n

(n−1) <
(

n−1
n

)n
< e−1

(We twice used the fact that for positive numbers
a,b,c,d, that a/b < c/d =⇒ d/c < b/a)

Thus e
−n

(n−1) <
(

1− 1
n

)n
< e−1 as required.//

8c 8.c.i
The probability of A1 winning first up equals p.
The probability of A1 winning on the second round [af-
ter n people (including A1’s first attempt), failed to win]
equals qnp
The probability of A1 winniung after two rounds is q

nqnp

Thus, W = p+ pqn + pq2n + pq3n + · · ·
W = p+ pqn(1 + qn + q2n + · · · )
= p+ pqn

1

1− qn
(using G.P. summation formula)

= p+
pqn

1− qn

=
p− pqn + pqn

1− qn

W =
p

1− qn

Then manipulate this to get the requested format;
W (1− qn) = p
W −Wqn = p
W = p+ qnW as required.
8.c.ii
Wm = p+ pqn + pq2n + · · ·+ pq(m−1)n

=
p(qmn − 1)

qn − 1
Wm

W
=

p(qmn − 1)

qn − 1
× (1− qn)

p
= −qmn + 1

= −
(

1− 1

n

)nm

+ 1

By part (b), taking the mth power, we have

e
−nm

(n−1) <
(

1− 1
n

)nm
< e−m

If n is large, that is, as n → ∞, then −nm
(n−1) → −m.

So,
(

1− 1
n

)nm → e−m as n → ∞.
Thus −

(

1− 1
n

)nm
+ 1 → −e−m + 1 as n → ∞.

So Wm

W is aproximately equal to 1− e−m, as required.

Contact: Comments/corrections are appreciated,

janh@hansendata.com.au,

Regards,

Jan Hansen 3 November 2009.
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