HSC 2009 Mathematics Extension 2 Solutions - Jan Hansen

Q]‘ 5 2 1
ion. I = — d
Integration /2 P — x

= 2In(z +4) —In(z = 1) |5
=2In9—1In4—(2In6 —1n1)

la Let u = Inz. Then du = dz/z and so —4In3—2In2—21n2~ 21n3
/m—xdx—/udu:u2/2+c =2In3—-4In2

(1 2 or In 3

(Inx)*/2 + ¢ T

1b I = xe?* dz. Use integration by parts;
u=z,dv=e*dx

du = dx,v = e** /2
"

221+ 5(32
So, I = [udv=wuv — [vdu (Formula) ol ,
[ = 2% )2— [ ¥)2dx = 26 |2— 2 [4+c Use the substitution v = 1/2* = 7. Then

du = =22"3dx and when © = V3 = u =

I o 2
1c As there is an z? term on top and bot- 1/3, when'z =1 = u =1/1" = 1 so we

tom we manipulate to form a '1’ as shown, have
, / 23 du B 1/ du
_ x 2/ T2
! /1+%x2dx /x e (4 1/u)
1 4z +1 1 1 /3y 1 /!
:_/ 5 dv — / 5 da S —— ¢ :—/ (u+1)"2du
1 1
= —r— —.2tan 2z +c¢ :(u—|—1)1/2’1 :\/__2/\/5
% 116 1/3
:Z—gtan 22+ ¢ Q2
Complex Numbers.
1d I /5 b
= —dx
e x>+ 3z — 4 2a i) = (i) = (—=1)*% =i= 0+ 14 (in the
a b '
2, 2b , (to 'realise’ the denom-
_/ a(x—l)—l—b(aj—l—él)dx . 241 “5
- 5 (SU—|—4)(£L’— 1) mator)

=446+ 20 — 3¢
= —

So a(x — 1) + b(x +4) =z — 6 and hence Si—1 “ 8

a+b=1and 4b—a = —6. Solving these two [ = —— = ~¢ + 5
simultaneously we obtain, a = 2,0 = —1(2c
and hence, 2.c.i 2.c.ii 2.c.iii
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Argand diagram

2d
y
/4
-1 1 3
1
/4
2e 2.e.i We're solving 2> = —1. Assume

the form, z = r cis@ = r cosf + ¢ sind.
crP(cisf)® = —1 = r° cisb0 = —1 (By
De Moivre’s theorem)

c.r=1and cisb0 = —1 = cis(m + 2mn)
where n € Z.

50 = 72r + 271m
0 = (2nt+ m where n € Z. (this is all of
them)

The five with principal arguments are for

n = 0,+1,£2 we have the five roots,

— cig T 3T jg =F —37
Z= CiSg, =, CIS =, =

and these are equally spaced around the cir-
cle differing in arguments by 27 /5,

cis cis, cis
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2.e.ii
cis (3m/5) ¢/
cis (11/5)
cis (-1)
7 X
cis (-T1/5)
cis (-311/5) |1
2f 2.f.1

Solve (x +iy)* = 3 + 4i

22 = y? + 2xyi = 3+ 4i

sox?—y? =3 and 22y = 4

Combining these by eliminating y we have,
22 —4/2% =3

= 322 — 4 = 0 (quadratic in
22 =(3+v9+16)/2=(3£5)/2=4,-1
As zisreal then z = +2 soy = +2/2 = +1
and therefore the two square roots are

z =22+41 = (24 1). (Check this by
squaring it, you should get 3 + 41.)

2.f.ii We use the otherwise method; notice
that 2 = 1 is a zero of 22 + iz — 1 — i ,
dividing out we get,

2

z+i41

z—1 )2 4iz—1—i
22—2
(t+1)z—1—3i
(14+1)z—(1414)
0

Thus the equation becomes, (z —1)(z+17+
1) = 0 and so the solutions are

z=1—-1—1
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Q3

3a Graphs.

3.a.1 3.a.ii 3.a.iii
Yy

1F-=

Q3a

—_—— e e —— -

S
~ o~
___________

3b Graphs.

22 + 2xy + 3y? = 18. Differentiating implic-
itly regarding y as a function of x,
220 + 2y + 2xy’ + 6y.y =0
2y (x 4+ 3y) = —2(x + y)
y=—"""
T+ 3y
So y' = 0 (for stat pts)

— —1r—y=0 — y = —x, and substi-
tution back into the equation gives,

(©2009 by Jan Hansen. All rights reserved.

X

Q3a (iii)  y= f(2?)
2% — 222 4 322 = 18
202 = 18

r =33

y = F3 and hence the stat points are
(—3,3),(3,—3) (and we have checked that
at these points, = + 3y # 0]

3c Polynomials.

We have, P(x) = 23 +ax®+bx+5, a,b € IR.
If (x—1)% is a factor then by theory, P(1)
P'(1) =0 and P'(z) = 32 + 2ax + b, so we
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have 1+a+b+5=0and 3+ 2a+b=0.
b=—-6—aq — 34+2a+-6—a=0 —
a=3 —= b=-6—-3=-9

3d Volumes——cylindrical shells.
y-axis
=D
Y2-Y1
x-axis

ove[ 'rr(x+6x)2-1TX2 ] (y2-y1)

From theory we have the volume of the
infinitesimal shell 6V = «(ri — r)h
(rg +71)(r2 — r1)(y2 — y1) and r2 = x + o,
m=

OV =n(x+x+dx)(x+dr —2)(ys — 11)
OV = 2nx(z +1 — (x — 1)%)dz
(Ignoring 62 terms)

3
V = 27r/ r(r+1) —x(zr — 1)2 dx (Limits
0

were obtained as; x + 1 = 2%+ 1 — 22 —
2-32=0 = 2=0,3)

a’/’ —_
3

V=27r/ v’ +x—a’+ 207 —vdr
0
3

V:27T/ 322 — 2¥dr = 2n [x?’—x4/4]3
0

0
27
= 27(27 — 81/4) = TW units ?
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Q4

4a Conics.

4.a.i /
2¢ 2yy
Get /- el + i 0
, ba b2z
— V=" ==
aYi( at P) a~Yo

So the normal gradient is the negative recip-
rocal of the tangent gradient, and we have

a’yo
Yy — Y = 5—(r —x9) NORMAL
b2ZL‘0
4.a.ii When y =0 (on z axis) then
a*yo

(a? — b?)xq
a2
Recall that for an ellipse V? = a?(1—¢?) =

b2 = a?2—a%e? — a?—b% = a%e? and there-

Solving this for x gives, x =

fore we have
a’e’x
a2
quired.//
4.a.iii By the focus directrix definition we
have PS = ePM and PS’ = ePM’. There-

fore,

= ¢’y and so N(e’x,0) as re-

xr =

PS

PS" ePM’

and in terms of the coordinates we have
PS aje—mxy a—ex
PS"  xy+ale exp+ta
_ela—exy) NS
~elezg+a) NS
(since NS = ae — e*zy = e(a — exp) and
NS' = e?xy+ ae = elexy +a) )
4.a.iv. We have « ZS'PN and =
/ZNPS and by the sine rule we have

PS NS q PS’ NS’
sin /PNS  sinf M sin ZPNS"  sina
So by (iii) since PS/NS = PS’'/NS’ then

we have

ePM  PM

PM’
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sinZPNS  sinZPNS’

sin8  sina
but ZPNS' = rm—ZPNS (since ZSNS'is a
straight angle) and since sin(r — ZPNS) =
sin ZPN S we have

sinZ/PNS ~ sin(m — ZPNS) B
sin 3 B sin o B
PN

St _ S and therefore
sin «

_ = — —> sina = sin and as

sin (3 sin a

o, < m/2 (by construction) then we con-
clude that o = [ as required.

4b Mechanics.

4.b.1
(54
T
T sinex
d—E-
.—i
& N
X2 'J N sino
i ™/ 2-&X o |

Resolve vertical forces:
T cosa + Nsina =mg
Resolve horizontal forces:
Tsina — Ncosa = mrw? ...(2)

(1)

4.b.ii (1) x cosa + (2) x sin« gives

(©2009 by Jan Hansen. All rights reserved.

2

T = mgcosa+ mrw”sin «

= m(gcosa + rw?sin a) as required.

(1) x sina — (2) X cos a gives

N = mgsina — mrw? cos o

= m(gsina — rw? cos a)

(For both calculations we used cos?a +
sina = 1)

4.b.iii

If T'= N then

m(gcosa + rw?sina) =

m(gsina ~ rw? cos a)

gcosa + rw?sina = gsina — rw

9 g SIno— CoS
we ==X —
T sSin &« + Ccos «

t —1
~7 (&> as required.//

~r \tana + 1
(here we dividing top/bottom by cos a and

2cos

using tan o = sin a;/ cos «)
4.b.iv

We know that w? > 0 and so the right hand
side, in (iii), must be positive also.
tana — 1

Hence——— > 0
tano + 1

c.tana > 1 (since a > 0 and so
tana + 1 > 0)

.« > tan"'1 and hence a > 7/4 and hence
as obviously o < 7/2 we arrive at

T/d<a<7/2

Q5

5a Circle Geometry.

5.a.1
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LADB = /2 (angle subtended by a diam-
eter AB)

LKXD = ZY X B (vertically opposite an-
gles are equal)

AKDXI|||[ABY X ( AA - two correspond-
ing angles are equal )

Hence the third corresponding angle is also
equal and thus

a = LAKY = /XKD = /ZXBY =
ZABD = (3, as required.
5.a.ii

We know a = [ (corresponding angles in
the similar triangles of part (i) are equal)

Also, ZDCA = ZDBA = « (angles on the
circle subtended by same segment AD are
equal)

.. DKCX 1is a cyclic quadrilateral as the
interval DY subtends the same angle o at

(©2009 by Jan Hansen. All rights reserved.

K and at B.

(Circle result: Angles on circumference of
a circle subtended by same segment are
equal)

5.a.iii

Firstly from the right-angled triangle
AXY B we know that v + g = 7/2.
Buta=8 = y+a=m7/2

Also, ZACB = 7/2 (as AB is a diameter).
Hence, /KCB = ZKCA+ ZACB = a +
Yy+r/2=n/2+7/2=m.

Thus ZKCB = 7 is a straight angle and
therefore K, C, B are on the same straight
line and so are collinear, as required.

5b Integration.

5.b.

I, = fol 22162 o First we will use a sim-
ple substitution and then we use integration
by parts to finish.

Let w = 22, then dw = 2z dx and the inte-

gral becomes

1
I =-
2
parts using the formula [udv = uv— [vdu

we choose © = w" and dv = e dw.

1
/ w"e" dw. Now for integration by

Then du = nw" ! dw and v = €v, so that

1 1 1
— n/ w" e dw
0 0

I, = —w"e"
1
= 5(1".61 —0) —nl,

2

_ nl,_1 as required.
5.b.ii
IQ = 6/2 — 2[1
]1 = 6/2 — 1[0
1 1 e—1
Iy=05 [ we’dw=05¢"|,= 5
Thus Iy = ¢/2 — (e — 1)/2 = 1/2 and

L=e¢/2-21/2=¢/2—1
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5¢ Graphs.
5.c.i
et —e”
fl) =S
. e’ —(=1)e™™ et +e "
= —1= —1
N -
() =

5.c.ii f"(x) > 0 since e > 0,e™* > 0 for|

all x

Also, f"(0) = 0 and so for > 0 the func-
tion f”(z) is increasing for all x > 0 (since
the sign of " tells us how f” is changing),
whilst being equal to zero at x = 0, hence
f’(x) > 0 for z > 0. [It is also obvious
graphically if you graph and combine y = e*
and y = e "]

5.c.iii

By a similar argument as in (ii)

f'(0) =0 and f"(x) > 0 for x > 0 (estab-
lished in part (i))

Hence f'(x) is an inceasing function so that
f'(x) > 0 for z > 0 ( as it started at zero
when z = 0)

Hence f(x) is an increasing function for
r > 0, and since it starts at @ = 0 (ie
f(0) = 0), then we must have f(z) > 0
for x > 0 as required.

Q6
6a

The cross sectinal area is

Ax) = 2y(4 — )
(Z} e

2f(4—x)15dx:2[—
(—4/5)[0 — 4%72]
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)3/2

<II

4 -2

4 :
=g X 32 = 128/5 units?

6b 6.b.i
Assume that « is a zero we have P(«a)
ad+qga’+qa+1=0.

1 1
Now, P(—):—3+i+ +1
a’ o«
—5(1+qa+qoz + a?)
1
= 5]3(@)
0
a3
=0
and hence = is a zero.//
6.b.ii

Since « is not real and the coefficients of P
are real then by theory the roots must occur
in complex conjugate pairs, say, «, a.
Q6.b.ii.1

Product of roots is av x & x (—
—1/1 = —1, and hence
laP=1 = |a| =1

(sinece for any complex number z, |z| > 0
and 2z = |2]?).

1) =—d/a=

Q6.b.ii.2
Sum roots is a+a+(—1) =
—q = at+a=1-gq.

1—
So Re(a) = Tq

—bja=—q/1=

(since for a complex number z, z + 2
2Re(z) )

6¢c 6.c.i

PQ?* = OP2 — r? (Pythagoras)

PQ?* = 2?2 +y? — r? (using distance formula
on OP)

Finaly, PQ = /22 +

6.c.ii

PQ =PR = Ja2+y2—r2=c—uz

(PR is just the difference in x coordinates)
.22 —|—y —r2 =%+ 2% — 2zc

y? = r? + ¢® — 2zc as required.

y2 — /r'n2'
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6.c.iii

We put the parabola into standard form to
read off the vertex and focal length;

y? = —2cx + 12+ 2

_ (r*+c?)
= —2c (a: — T)

This the focal length is a = 2¢/4 = ¢/2 and
the vertex is (%, O).

Therefore, the focus is

2+ 2 o 2
S (232 - 5.0) =5 (5.0)
6.c.iv The directrix of the locus is
_pr24e? 2492
T = /2=

But we know that PM = PS (definition of
parabola, with M on directrix)
and PQ) = PR (from the locus definition)

Hence,

|PS— PQ|=|PM — PR)|

(difference in the z-values of points M and

R)

r? + 2c
2c

as required.

Q7
Ta 7.a.i Q7.a.i.1
rT=qg—1rv

dv

.'.ngg—TU
dv

_ . d
(since by theory 7 = s (v?/2) = U@)

— ¢ | which is independant of x

qg—Trv

—Tv

g—TU
g — ™ 9
g—T1v  g—1rv

dv
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= —%[U—i—ghﬂg—rvﬂ +c

Using intital conditions,
0=0-(g/v))lng+c = c= %lng
Updating z,

r = —%[v+gln|g—rv|] +%lng

“n ()
__211 — -
r qg—Trv r

Q7.a.i.2

Hence.

L:%IH ¥ )—30 = &2m
0.22 9.8 -0.2 x 30 0.2

(2 sf)

7.a.il

r = e /19295, — 10¢;) + 92 (where s;
sint, e = cost)

&= —e 19295, — 10¢;)/10 4 e*/19(29¢, +
103t)

= e 19(29¢; + 10s; — 295;/10 + ;)

= e~19(30¢; + 715;/10)

Solve for ¢ where z = 0

30c, + T1s;/10 = 0
30c, = —71s;/10

tant = —300/71

—> t = nm — tan"1(300/71) and we need
t > 0 so require that

nm > tan"1(300/71)

= n > tan"1(300/71) /7 = 0.426...

= n > 1.

Choosing n 1 we have t
tan~1(300/71)/ = 1.80 (2dp)

= = e

Hence z = ¢ 1#/10(295in 1.8 — 10 cos 1.8) +
92 = 25.487 + 92 = 117.487

and as he is 2m tall his head reaches down
a distance of 117.487 + 2 = 119.487m and
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so he stays dry. (i.e. out of the water).

7b

Let z = cosf + isin6.

7.b.i

Using De Moivre’s Theorem we have

2" = cosnbf + isinnb and

27" = cos(—n#) + isin(—nd)

= cosn#—isinnd (since sine is an odd func-
tion and cosine is even function)

So, 2" + z7" = cosnb + 1 sinnf + cosnb —
1sinnf
= 2 cos nb as required.

7.b.ii

By part (i), with n = 1 we have, z + 2~! = 2cos 6, and
hence

(z+271)?™ = (2cos 0)?™ and expansion of the left side
using the binomial theorem gives

2
Zm: <2m> Zmer'Zfr
r

0
2m
_ (2m> ,2m=2
T\
2 2 2
_ < 6”) L2m g < 1") L2m=2 ( 72”) L2m—4 |

2m 2m\ _om
z
2m

2mY\ o —2m—+2
( 3 >z + + <2m B 1>z +

(z 42712 =

But (281) = @ﬁ)v (QT) = (272nﬁzl)7 (21271) y- (23:?2)’
and so
(z+27H)2m = <2(r)n> (2™ 4 272M) + (271n>

2
(22m72 4 272m+2) 4 ;n (22m74 o z72m+4) o
2m

+ (m B 1) (2 +272)++ <2T7:> P
= [(2(7;1) cos 2mb + <21n> cos2(m — 1)0+

2m cos2(m—2)0+--- + 2m cos 20| + 2m as
<2> QH—J ] <m>

required.

7.b.ili Integrating the expression in (ii) and manipu-
lating the contants we have

N /2 cos2m 0 g
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2m 1 2m — 2

T om \ sin 20172 N
m—1 2 0

()3

_ g-2m+1 [sin 2mo N <2m> sin(2m — 2)6

n 2m sin(2m — 4)0
2 2m —4

/2
9=2m <2m) o
m/ o
— 272m+1 [0] + 272m

T 2m
~ 2mti\
8
a 8.a.i Start
(cot§/2 — tan6/2)

1 (cosf/2 sin6/2

2 \sinf/2  cosB/2

1 cos? /2 — sin? /2
2 sin@/2 cos6/2

0
= C?S 7 (using double angle formulas)

o

no | —00

T cot € and hence we are done as
§(cot 0/2 —tanf/2) = cot 6 is equivalent to the identity

we are asked to prove.
8.a.il
We are required to prove:

n

1 x 1 x
Zﬁtani = on 1 cotQ—n—Qcotx

r=1

Firstly, for n =1,

1 x x
LHS = F.tan§ :tan§

RHS = %cotx/Q —2cotx

=cotz/2 —2cotx

=cotx/2 — (cot /2 — tanx/2) by part (i).
=tanz/2=LHS

Hence the statement is true for n = 1.

Secondly, we prove the statement true for n = k + 1
whenever the statement is true for n = k. So we assume
that

T
cot — —2cotx...

1 T 1
Z or—1 tan or = 9k—1 ok

r=1

(%)

Now assuming (*) we prove that

k+1

x 1 x
Z 51 tang = ﬁcotﬁ —2cotx... (%)
r=1
k+1 T
Start, LHS = Z 51 tan o
r=1
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1 x 1
= 951 cot oF 2cotx + o tan 2k+1 (by induction hy-
pothesis)
1 x
2’“ (cot oF + tan 2k+1) —2cotx
1 x
= 2—,6(:0‘5% —2cotx

= RHS and hence the statement is true for n = k + 1
when it is true for n = k.

Finally, we conclude that by induction the statement
is true for all positive integers.

Remark: This is enough of a conclusion to a proof
by induction—contrary to the advice of many
textbooks. A reference is the 2007 examiners report,
http://www.boardofstudies.nsw.edu.au/

hsc_exams/exam-papers-2007/pdf_doc/
mathematics-ext2-notes-07.pdf. The 2/3
unit syllabus confirms this view also - see page 47.

JSH

8.a.iil Firstly a preliminary, Recall that

3::1

lim
z—0 tanx

Hence
x

n

lim =
z—0 tan — 57

We have, > "_; 2T /=T tan 5-
1

t = _9cot
cot — — 2cotx
= 2" _9cotx

xtanQn

2

= — — 2cotx by the above result.
x

8.a.iv

Substituting = /2 into the result of part (iii) we have

1 1
tanm/4 + §tan7r/8 + Ztanw/16 + -

2 ™
= — —2cot =
% 2
=—-0
T
_1
o
8b

Area under curve is

Jn-

Define A;, =lower rectangle area=1x 1/n=1/n
Define Ay =upper rectangle area= 1 x 1/(n — 1) =

1/(n 1)

1x lnn—lnn—l—ln—l
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10

Ths since by construction, A;, < A < AU then we have
I/n<In_"5 <1/(n—1) and exponentlatlng (i.e. take
the power of e) and use the fact that e* = x to get
en < e < eﬁ

el < (nfl) < e ) (by taking power of n)

et < (=" <e?

(We twice used the fact that for positive numbers
a,b,c,d, that a/b < ¢/d = d/c < b/a)

Thus e D < (1 — %)n < et
8c 8.c.i

The probability of A; winning first up equals p.

The probability of Ay winning on the second round [af-
ter n people (including A;’s first attempt), failed to win]
equals ¢"p

The probability of A7 winniung after two rounds is ¢"¢"p

as required.//

Thus, W = p + pg™ + pg*" + pg®" + - --
W=p+pg"(I+q"+¢*" +--)

— (using G.P. summation formula)

=p+pd
pq"

=p —+ - qn
- p—pq" +pq"
e q"

D

=il
Then manipulate this to get the requested format;
W@ —q")=p
W —-Wq"=p
W = p+ ¢q"W as required.
8.c.ii

Wi,

+ pq(mfl)n

=p+pg" +pg + -
_p(qmn—l)
e

plg™ —1) (1-q")
:_qmn+1

1 nm
——(1-7) +
n

By part (b), taking the mth power, we have
eGl < (1= 1) < gmm

Wi
w

If n is large, that is, as n — oo, then (;’ET) — —m.
So, (1 — %)nm — e "™ asn— oo.
Thus —(1—%)nm+1—>—e*m—|—1asn—>oo.

—m

So % is aproximately equal to 1 — e™", as required.

Contact: Comments/corrections are appreciated,
janh@hansendata.com.au,
Regards,

Jan Hansen 3 November 2009.
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