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HSC 2005 MATHEMATICS EXTENSION 2 (4 unit) EXAM :
ANSWERS/SOLUTIONS.

Jan Hansen, janh@hansendata.com.au, www.hansendata.com.au

Question 1

Q1.a Let u = sin θ. Then du = cos θ dθ and so I =

∫

1

u5
du =

u−4

−4
+ c =

−1

4 sin4 θ
+ c

Q1.b

Q1.b.i
5x

x2 − x − 6
≡ a

x − 3
+

b

x + 2
≡ a(x + 2) + b(x − 3)

(x − 3)(x + 2)
. So 5x ≡ a(x + 2) + b(x− 3).

Putting x = 3 gives 5.3 = a.5+0 and so a = 3. Putting x = −2 gives −10 = 0+b(−2−3)
so b = 2. So a = 3,b = 2.

Q1.b.ii I =

∫

5x

x2 − x − 6
dx =

∫

3

x − 3
+

2

x + 2
dx = 3 ln |x − 3| + 2 ln |x + 2| + c.

Q1.c I =

∫ e

1

x7 ln x dx. Put u′ = x7, v = ln x. Then u = x8/8, v′ = 1/x. So,

I = uv −
∫

uv′ =
x8

8
ln x −

∫

x7

8
dx =

[

x8

8
ln x − x8

64

]x=e

x=1

=
7e8 + 1

64
.

Q1.d I =

∫

dx√
4x2 − 1

=
1

2

∫

dx
√

x2 −
(

1
2

)2
=

1

2
ln

(

x +

√

x2 − 1

4

)

+ c

=
1

2
ln
(

2x +
√

4x2 − 1
)

+ c′

Q1.e
Q1.e.i
t = tan θ/2.
dt

dθ
=

1

2
sec2 θ/2 = 1

2(tan2 θ/2 + 1) =
1

2
(t2 + 1). We can also write 2 dt = (t2 + 1) dθ

Q1.e.ii
2t

1 + t2
=

2 tan
θ

2

1 + tan2 θ

2

=
2 sin

θ

2
� cos

θ

2

sec2
θ

2

=
2 sin

θ

2
cos2 θ

2

cos
θ

2

= 2 sin
θ

2
cos

θ

2
= sin θ

Q1.e.iii

∫

cosec θ dθ =

∫

dθ

sin θ
=

∫

dθ(1 + t2)

2t
=

∫

dt

t
= ln t + c = ln (tan θ/2) + c

Question 2
Q2.a z = 3 + i, w = 1 − i

Q2.a.i 2z + iw = 2(3 + i) + i(1 − i) = 6 + 2i + i − i2 = 6 + 3i + 1 = 7 + 3i
Q2.a.ii z̄w = ¯(3 + i)(1 − i) = (3 − i)(1 − i) = 2 − 4i

Q2.a.iii
6

w
=

6

(1 − i)
.
(1 + i)

(1 + i)
=

6 + 6i

(1 − i)(1 + i)
=

6 + 6i

2
= 3 + 3i

Q2.b β = 1 − i
√

3
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Q2.b.i |β| =
√

1 + 3 = 2, and since β lies in quadrant 4 we have, arg β = −tan−1
√

3 =

−π

3
. So β = 2 cis

(

−π

3

)

Q2.b.ii β5 = 25

(

cis
−π

3

)5

= 32 cis
−5π

3
= 32 cis

π

3

Q2.b.iii β5 = 32(cos π/3 + i sin π/3) = 32
(

1/2 + i
√

3/2
)

= 16 + 16
√

3i

Q2.c Firstly, |z − 1 ≥ 1 are all the points which lie on or outside the circle of radius 1,
centee (1, 0). Let z = x + iy, then

|z − z̄| < 2

|x + iy − (x − iy)| < 2

|2iy| < 2

|y| < 1

−1 < y < 1

So the region is the points above the line y = −1 and below the line y = 1 and excluding
all points inside the circle at (1, 0) with radius 1, and excluding the points (1, 1), (1,−1).

x

y

1 2 3−1

1

−1

Q2.d
Q2.d.i The angle between OQ and line l is arg z2−α, and the angle between line l and OP

is α−arg z1. Putting these equal, arg z2−α = α−arg z1 which gives arg z1 +arg z2 = 2α
as required.
Q2.d.ii We have z1 = |z1| cis (arg z1), z2 = |z2| cis (arg z2). Multiplying and using |z1| =
|z2|, we get z1z2 = |z1||z2| cis (arg z1) cis (arg z2) = |z1|2 cis (arg z1 + arg z2) = |z1|2 cis 2α
or in long format z1z2 = |z1|2(cos 2α + i sin 2α) as required.
Q2.d.iii
z1z2 = |z1|2 cis 2π/4 = |z1|2i
As z1 varies. |z1| takes all values |z1| > 0 (|z1| 6= 0 since the argument of z1 is not
undefined.). Therefore the locus of R is y > 0 (the positive y-axis).

Question 3

www.hansendata.com.au
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Q3.a

4 8−4−8

4

−4

x

y

2−1
y = f(x)

4 8−4−8

4

−4

x

y

−1

Q3(a)(i)y = f(x + 3)

4 8−4−8

4

−4

2 x

y

Q3(a)(ii)y = |f(x)|
4 8−4−8

2

x

y

2

Q3(a)(iii)y =
√

f(x)

4 8−4−8

4

−4

x

y

−1
Q3(a)(iv)y = f(|x|)

Q3.b

3 6 9−3−6−9

x

y

y = x

Q3(b): y = x +
8x

x2 − 9

Q3.c We have, x3−4xy +y3 = 1. Differentiate, regarding y as a function of x to obtain,

3x2 − 4y − 4xy′ + 3y2y′ = 0 and solving for y′, y′ =
4y − 3x2

3y2 − 4x
, so at (2, 1) the gradient of

www.hansendata.com.au
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the normal is m =
4x − 3y2

4y − 3x2

∣

∣

∣

∣

(2,1)

=
8 − 3

4 − 12
= −5

8
.

The equation of the normal is y − 1 = (−5/8)(x − 2) so finally 5x + 8y − 18 = 0

Q3.d Resolve Horizontal:
mv2

r
= N sin θ

Resolve Vertical: N cos θ = mg

So, sin θ =
mv2

rN
, cos θ =

mg

N
, upon squaring,

1 =

(

mv2

rN

)2

+
m2g2

N 2

N 2 =
m2v4

r2
+ m2g2

= m2

(

g2 +
v4

r2

)

N = m

√

g2 +
v4

r2

.

Question 4
Q4.a
Q4.a.i
δV = π(x + δx + x)(x + δx − x)y = πe−x2

(2xδx + δx2)

δV = 2πxe−x2

δx

V = 2π

∫ N

0

xe−x2

dx

V = π

∫ N2

0

e−u du = π
[

−e−u
]N2

0
= π

[

−e−N2 −−e0
]

= π

(

1 − 1

eN2

)

(where we used the subst. u = x2, dx = 2x dx and ignoring (δx)2 terms as per theory)
Q4.a.ii As N → ∞, then V → π.
Q4.b x4 + px3 + qx2 + rx + s = 0
Q4.b.i sum and product of root equations are, Σα = −p, Σαβ = q, Σαβγ = −r, αβγδ =
s
Q4.b.ii
(Σα)2 = Σα2 + 2Σαβ

Σα2 = (Σα)2 − 2Σαβ
= (−p)2 − 2.q
= p2 − 2q

Q4.b.iii
Σα2 = 9− 2.5 = −1. The sum of 4 real numers squared must be ≥ 0 so there must exist
non real roots.
Q4.b.iv
P (0) = −8, P (1) = 2. This shows there is at least one real root as the polynomial has

www.hansendata.com.au
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to cross the x-axis somewhere between0 and 1. But P (x) has real coefficients so any non
real roots occur in complex conjugate pairs. Hence from (iii) we deduce that either there
are two non real roots or four non real roots. Hence since there is at least one real root,
we must have precisely two real roots.
Q4.c
Q4.c.i Substitute the point so, −b2x1(−b) = (a2−b2)x1y1. Factorise, x1(b

3−(a2−b2)y1) =

0. If x1 6= 0, then y1 =
b3

a2 − b2
. If x1 = 0 then 0/a2 + y2

1/b
2 = 1, so y1 = ±b.

Q4.c.ii
We have

y1 = b3

a2−b2 < b

∴ b2 < a2 − b2

2b2 < a2

2a2(1 − e2) < a2

1 − e2 < 1/2
e2 > 1 − 1/2

e2 > 1
2

e > 1√
2

Question 5
Q5.a
Q5.a.i Area = 0.5ad = 0.5bc, and Pythagoras says a2 = b2 + c2 so, a2d2 = b2c2 becomes
b2c2 = d2(b2 + c2)
Q5.a.ii
By (i) we know
AC2.AB2 = AP 2(AC2 + AB2). Dividing throughout by AP 2AC2AB2 we have

1

AP 2
=

1

AB2
+

1

AC2
. Multiply by h2 to get

h2

AP 2
=

h2

AB2
+

h2

AC2
.

But tan2 α =
h2

AB2
, tan2 β =

h2

AC2
, tan2 γ =

h2

AP 2
.

Hence, tan2 γ = tan2 α + tan2 β as required.
Q5.b
Q5.b.i Ferdinand wouldn’t score the goal last as he would already have lost so the
only possibilitites are these: FMMMMM, MFMMMM, MMFMMM, MMMFMM, MM-
MMFM. Using the formula will be better in general though; Fix an M at the end. In
how many ways can you arrange 4M’s and one F? In 5!

1!4! = 5 ways.
Q5.b.ii Using the method in one applied to the different possible numbers of F’s and
M’s we have

2

(

1 +
5!

4!
+

6!

4!2!
+

7!

3!4!
+

8!

4!4!

)

which equals 252

Q5.c

www.hansendata.com.au



w
w
w
.h

a
n
se

n
d
a
ta

.c
o
m

.a
u

HSC 2005 Mathematics Extension 2 Solutions - Jan Hansen

Q5.c.i Since f ′ > 0 the inverse exists so we may write x = f−1(y) Consider the rectangle
with corners (0, 0) (a, b). The area of this rectangle is ab and is made up of the area
under the curve y = f(x) between x = 0 and x = a plus the area ’under’ the curve

x = f−1(y) between y = 0 and y = b. Hence ab =
∫ a

0 f(x) dx +
∫ b

0 f−1(y) dy but y is a

dummy variable so
∫ b

0 f−1(y) dy =
∫ b

0 f−1(x) dx. Hence ab =
∫ a

0 f(x) dx +
∫ b

0 f−1(x) dx

which is the required result.
Q5.c.ii
I =

∫ 2

0 sin−1 x
4 dx. With x = sin−1 y

4 we have y = 4 sin x so f(x) = 4 sin x

I = ab −
∫ a

0 f(x) dx

= 2.π/6 −
∫ π/6

0 4 sin x dx

= π/3 + 4 cos x|π/6
0

I = π
3 + 2

√
3 − 4

Q5.d
Q5.d.i
AD = 2y and denoting theheight of the rectangle ABCD by hx

Area ABCD = base × height

= 2
√

9 − x2hx

= 2
√

9 − x2x tan 60

= 2x
√

27 − 3x2

as required.

Q5.d.ii

V = 2
√

3

∫ 3

0

x
√

9 − x2 dx. Put u = 9 − x2, du = −2x dx

Then, V = −
√

3

∫ 0

9

u1/2 du =
√

3

[

2

3
u3/2

]9

0

= 18
√

3

Question 6
Q6.a
Q6.a.i Step 1: I0(x) =

∫ x

0 t0e−t dt = [−e−t]
x
0 = 1 − e−x and 0![1 − e−x(1)] = 1 − e−x so

LHS = RHS and so its true for n = 0.
Step 2: Assume the result is true for n = k. so assume that

Ik(x) = k!

[

1 − e−x

(

1 + x + · · · + xk

k!

)]

Step 3: Prove the result true for n = k + 1, so prove that

Ik+1(x) = (k + 1)!

[

1 − e−x

(

1 + x + · · · + xk+1

(k + 1)!

)]

Start,
Ik+1(x) =

∫ x

0 tk+1e−t dt. For integrtaion by parts, let u = tk+1, and v′ = e−t, so, u′ =
(k + 1)tk, v = −e−t. Then,

Ik+1(x) =
[

−tk+1.e−t
]x

0
+

∫

(k + 1)tke−t dt

www.hansendata.com.au
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= −xk+1e−x + (k + 1)Ik(x)

= −xk+1e−x + (k + 1)k!

[

1 − e−x

(

1 + x + · · · + xk

k!

)]

= −xk+1e−x (k + 1)!

(k + 1)!
+ (k + 1)!

[

1 − e−x

(

1 + x + · · · + xk

k!

)]

= (k + 1)!

[

1 − e−x

(

1 + x + · · · + xk+1

(k + 1)!

)]

Hence it’s true for n = k + 1 .
Step 4: Since its true for n = 0 and it is true for n = k + 1 ewhenevr it is true for n = k
then it is true for all integers n ≥ 0.
Q6.a.ii

∫ 1

0 tne−t dt = In(1) The integrand is non negative so the value of the integral
must also be non negative.

Also, et ≥ 1 for all t ≥ 0, so 1
et ≤ 1, and hence

tn

et
≤ tn Therefore,

In(1) =
∫ 1

0 tne−t dt ≤
∫ 1

0 tn dt = 1
n+1

so we have 0 ≤ In(1) ≤ 1

n + 1
as required.

Q6.a.iii By (ii) we have

0 ≤ n!

[

1 − e−1

(

1 +
1

1!
+

1

2!
+ · · · + 1

n!

)]

≤ 1

n + 1
Therefore dividing throughout by n! we have

0 ≤
[

1 − e−1

(

1 +
1

1!
+

1

2!
+ · · · + 1

n!

)]

≤ 1

(n + 1)n!
=

1

(n + 1)!
as required.

Q6.a.iv As n → ∞ the right hand side of the result in (iii) approaches zero, and hence

lim
n→∞

[

1 − e−1

(

1 +
1

1!
+

1

2!
+ · · · + 1

n!

)]

= 0

Hence lim
n→∞

(

1 +
1

1!
+

1

2!
+ · · · + 1

n!

)

= e

Q6.b n > 2, ωn = 1. So 0 = ωn − 1 = (ω − 1)(1 + ω + ω2 + · · ·+ ωn−1) and as ω 6= 1 we
must have 1 + ω + ω2 + · · · + ωn−1 = 0.
Q6.b.i Expanding (1 + 2ω + 3ω2 + 4ω3 + · · · + nωn−1)(ω − 1) we have
ω + 2ω2 + 3ω3 + 4ω4 + · · · + nωn − 1 − 2ω − 3ω2 − 4ω3 − · · · − nωn−1

= −ω − ω2 − ω3 − · · · − ωn−1 + nωn − 1
= 0 + nωn = n
since ωn = 1 and −ω − 1−ω2 −ω3 − · · · −ωn−1 = −(1 + ω + ω2 + · · ·+ ωn−1) = −0 = 0.
Q6.b.ii With z = cis θ, z2 = cis 2θ = cos 2θ + i sin 2θ. Using the given identity

1

z2 − 1
=

1

cos 2θ + i sin 2θ − 1
=

( cis θ)−1

cis θ − ( cis θ)−1
=

cis (−θ)

cis θ − cis (−θ)

=
cos θ − i sin θ

cos θ + i sin θ − cos θ + i sin θ
=

cos θ − i sin θ

2i sin θ
Q6.b.iii Using part (ii),

www.hansendata.com.au
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1

ω − 1
=

1

cos 2π
n + i sin 2π

n − 1
=

cos π
n − i sin π

n

2i sin π
n

× i

i
=

i cos π
n + sin π

n

−2 sin π
n

= −1

2
− i

2
cot

π

n

Hence Re

(

1

ω − 1

)

= −1

2
Q6.b.iv With ω = cis 2π

5 and by part (i),

1 + 2ω + 3ω2 + 4ω3 + 5ω4 =
5

ω − 1
Expanding,

5

ω − 1
= 1 + 2 cis

2π

5
+ 3 cis

4π

5
+ 4 cis

6π

5
+ cis

8π

5

=

(

1 + 2 cos
2π

5
+ 3 cos

4π

5
+ 4 cos

6π

5
+ cos

8π

5

)

+ i(...)

∴ 1+2 cos 2π
5 +3 cos 4π

5 +4 cos 6π
5 +cos 8π

5 = 5 Re
(

1
ω−1

)

= 5.−1/2 = −5/2 as required.
Q6.b.v Using ASTC the expression in part (iv) becomes
1 + 2 cos 2π

5 − 3 cos π
5 − 4 cos π

5 + 5 cos 2π
5 = −5/2.

7 cos 2π
5 − 7 cos π

5 = −7/2 which simplifies to 2 cos2 π
5 − cos π

5 − 1/2 = 0. Solving,

cos
π

5
=

1 ±
√

1 + 4.1/2.2

4
=

1 ±
√

5

4
.

But cos π
5 > 0 hence cos

π

5
=

1 +
√

5

4

Question 7
Q7.a
Q7.a.i ∠BNP = ∠BMP = 90o, so BNPM is cyclic quadrilateral since opposite angles
add to 180o

Q7.a.ii ∠BNM = ∠BPM (Angles on same chord)
Also, ∠BAP = ∠BPM (Angle between tangent and chord is equal to angle on chord)
∴ ∠BNM = ∠BAP which shows that MN ‖ PA (corresponding angles are equal) as
required.

Q7.a.iii
r

s
=

p + q

u
(since ∆TMN ‖| ∆TPA)

∴
s

u
=

r

p + q
<

r

p
(since q > 0)

Q7.a.iv
Noting that ∆TBM is a right angled triangle with hypotenuse p, the longest side, we

see that p > r so r
p < 1. So

s

u
<

r

p
< 1. So s

u < 1 and s < u as required.

Q7.b Firstly since ẍ = − k

x2
, k > 0 then this tells us that mRω2 = mk/R2 (with x = R).

Q7.b.i Now, ω = 2πf = 2π/T so mRω2 = mR.4π2/T 2 = mk/R2 and solving we have

k =
4π2R3

T 2

www.hansendata.com.au
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Q7.b.ii Using ẍ =
d

dx

(

v2/2
)

we have
d

dx

(

v2/2
)

= − k

x2
= −kx−2 and integrating

with respect to x we have v2/2 = kx−1 + c. We are given that when x = R, v = 0 so

0 = k/R + c and so v2/2 =
k

x
− k

R
= k

(

1

x
− 1

R

)

Inserting the value for k, v2/2 =
4π2R3

T 2

(

R − x

Rx

)

and finally simplifying to get

v2 =
8π2R2

T 2

(

R − x

x

)

.

Q7.b.iii v =

√

8π2R2

T 2

√

(

R − x

x

)

Writing v =
dx

dt
and inverting we have,

dt

dx
=

T

2
√

2πR

√

x

R − x

t =
T

2
√

2πR

∫ R

0

√

x

R − x
dx

=
T

2
√

2πR

[

Rsin−1

(
√

x

R

)

−
√

x(R − x)

]R

0

=
T

2
√

2πR

[

(Rsin−1(1) −
√

0) − (Rsin−10 −
√

0)
]

=
T

2
√

2πR

Rπ

2
=

T

4
√

2
as required.

Question 8
Q8.a

Q8.a.i f(x) =
a + b

3(ab)1/3
x−1/3 +

x2/3

3(ab)1/3

Differentiate and simplify to get

3(ab)1/3f ′(x) =
2x − (a + b)

3x4/3
For stationary points f ′(x) = 0 and this oocurs when

x = a+b
2 . and using the first or second derivative test is easily seen to give a minimum

as required.
Q8.a.ii

When x = a+b
2 , f(x) =

(a + b)2/3

22/3(ab)1/3
and since this value was shown to be the minimum of

the function we know that for any c we have
a + b + c

3(abc)1/3
≥ (a + b)2/3

22/3(ab)1/3
. Cubing we get,

(

a + b + c

3(abc)1/3

)3

≥ (a + b)2

22(ab)
=

(

a + b

2
√

ab

)2

as re-

quired.

Now since
a + b

2
≥

√
ab (assumed) then

a + b

2
√

ab
≥ 1 and so also

(

a + b

2
√

ab

)2

≥ 1.

www.hansendata.com.au
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Hence,

(

a + b + c

3(abc)1/3

)3

≥
(

a + b

2
√

ab

)2

≥ 1 and so
a + b + c

3(abc)1/3
≥ 1

or equivalently
a + b + c

3
≥ 3

√
abc

Q8.a.iii
Let the roots be α, β, γ > 0. Then using sum/product of roots formulae we have α+β +

γ = p, αβγ = r and by part (ii) we have
p

3
≥ 3

√
r and so p3 ≥ 27r as required.

Q8.a.iv If this polynomial had three positive real roots then 23 ≥ 27 which is a contra-
diction so we cannot have three positive roots. But since p(0) = −1 and p(2) > 0 there
must be at least one positive real root. Noting the coefficients of the polynomial are real
and since the product of the roots is positive then either the remaining roots are both
negative or they are non real complex conjugate roots. But p′(x) > 0 for x ≤ 0 we can
see there are no negative roots (since p(0) = −1). So there is precisely one positive real
root.
Q8.b
Given A(a sec θ, b sec θ), B(a sec θ,−b sec θ), P (a sec θ, b tan θ)
Q8.b.i AP 2×PB2 = (02+b2(tan θ−sec θ)2)(02+b2(tan θ+sec θ)2) = b4(tan2 θ−sec2 θ)2 =
b4.1 = b4 and so AP × PB = b2 as required.
Q8.b.ii Using the sine rule.

CP

sin(π
2 + β)

=
AP

sin(α − β)
,

so CP =
AP cos β

sin(α − β)

Similarly,
PB

sin(α + β)
=

PD

sin(π
2 − β)

,

so PD =
PB sin(π

2 − β)

sin(α + β)
=

PB cos β

sin(α + β)
as required.

Q8.b.iii

CP × PD =
AP.PB. cos2 β

sin(α − β) sin(α + β)
=

b2. cos2 β

sin(α − β) sin(α + β)
and since tan β = b/a is constant then this only depends upon the angle α and not on θ

and therefore not on the position of the point P .
Q8.b.iv We have, CP × PD = p(q + r) and DQ × QC = q(r + p)
But by part (iii) these are equal to each other so we have
p(q + r) = q(r + p)
pq + pr = qr + qp
p = q as required.
Q8.b.v For some value of θ it is evident that P = T = Q so that in the limit since p = q
we have V T = TU .

The End
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