Question 1 (15 marks) Use a SEPARATE writing booklet

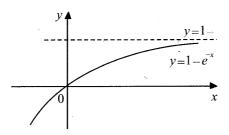
Marks

(a) It is given that $(2 + \cos x)(2 - \cos y) = 3$, where $0 < x < \pi$ and $0 < y < \pi$.

(i) Show that
$$\cos y = \frac{1 + 2\cos x}{2 + \cos x}$$
 and $\sin y = \frac{\sqrt{3}\sin x}{2 + \cos x}$.

(ii) Hence show that
$$\frac{dy}{dx} = \frac{\sqrt{3}}{2 + \cos x}$$
.

(b)



The diagram shows the graph of $f(x)=1-e^{-x}$. On separate diagrams sketch the graphs of the following functions, showing clearly the equations of any asymptotes:

(i)
$$y = \left[f(x) \right]^2$$

(ii)
$$y = f\left(x^2\right)$$

(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$y = \ln f(x)$$

- (c) The function f(x) is given by $f(x) = a + \frac{b \sin x}{x}$, $x \ne 0$ and f(0) = 0, where a and b are non-zero real numbers.
 - (i) Show that f(x) is an even function.
 - (ii) Find the general solution of the equation f(x) = a.
 - (iii) If $\lim_{x \to \infty} f(x) = 1$ and f(x) is continuous at x = 0, find the values of a and b.

Marks
Question 2 (15 marks) Use a SEPARATE writing booklet

(a)(i) Find
$$\int \frac{1-x^{-2}}{1-x^{-1}} dx$$
.

(ii) Find
$$\int (\sqrt{e^x} + 1)^2 dx$$
.

(b) Evaluate
$$\int_0^{\frac{\sqrt{3}}{2}} \frac{1-x}{\sqrt{1-x^2}} dx$$
.

(c) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_0^{\frac{\pi}{2}} \frac{1}{4 + 5\sin x} dx$.

(d)(i) If
$$I_n = \int_1^e (1 - \ln x)^n dx$$
, $n = 0, 1, 2, ...$ show that $I_n = -1 + n I_{n-1}$, $n = 1, 2, 3, ...$

(ii) Hence find the value of
$$I_3$$
.

Marks

Question 3 (15 marks) Use a SEPARATE writing booklet

- (a) Find all the complex numbers z = a + ib, where a and b are real, such that $|z|^2 + 5\overline{z} + 10i = 0.$
- (b) $z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 i$ are two complex numbers.
 - (i) Express z_1 , z_2 and $\frac{z_1}{z_2}$ in modulus / argument form.
 - (ii) Find the smallest positive integer n such that $\frac{z_1^n}{z_2^n}$ is imaginary. For this value of n, write the value of $\frac{z_1^n}{z_2^n}$ in the form bi where b is a real number.
- (c)(i) On an Argand diagram shade the region where both $|z-1| \le 1$ and $0 \le \arg z \le \frac{\pi}{6}$.
 - (ii) Find the perimeter of the shaded region.
- (d) On an Argand diagram the points A, B and C represent the complex numbers α , β and γ respectively. ΔABC is equilateral, named with its vertices taken anticlockwise.
 - (i) Show that $\gamma \alpha = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)(\beta \alpha)$.
 - (ii) Show that $\alpha^2 + \beta^2 + \gamma^2 = \alpha\beta + \beta\gamma + \gamma\alpha$.

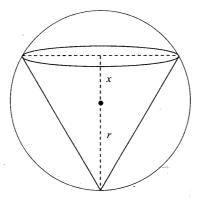
Question 4 (15 marks) Use a SEPARATE writing booklet

- (a) $P(a\cos\theta, b\sin\theta)$ is a point in the first quadrant on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $Q(a\sec\theta, b\tan\theta)$ is a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where a > b > 0.
 - (i) Sketch the ellipse, the hyperbola and their common auxiliary circle $x^2 + y^2 = a^2$ on the same diagram, showing the angle θ and the related points P and Q. Show clearly how the positions of P and Q are determined by the value of θ , $0 < \theta < \frac{\pi}{2}$.
 - (ii) Prove that the tangent to the ellipse at P has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.

 Deduce that this tangent cuts the x-axis vertically below Q.
 - (iii) Given that the tangent to the hyperbola at Q has equation $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$, show that this tangent and the tangent to the ellipse at P intersect at $T(a, b \tan \frac{\theta}{2})$. Show both tangents on your sketch.
 - (iv) Without any further working, sketch a second diagram showing both curves, the common auxiliary circle, the points P, Q and the corresponding tangents intersecting at T if $\frac{\pi}{2} < \theta < \pi$.
- (b) $P\left(2p, \frac{2}{p}\right)$ is a variable point on the hyperbola xy = 4. The normal to the hyperbola at P meets the hyperbola again at $Q\left(2q, \frac{2}{q}\right)$. M is the midpoint of PQ.
 - (i) Show that $q = -\frac{1}{p^3}$.
 - (ii) Show that M has coordinates $\left(\frac{1}{p}\left(p^2 \frac{1}{p^2}\right), p\left(\frac{1}{p^2} p^2\right)\right)$.
 - (iii) Show that as P moves on the hyperbola, the locus of M has equation $(x^2 y^2)^2 = -x^3 y^3.$

Question 5 (15 marks) Use a SEPARATE writing booklet

(a) A right circular cone of height (r+x) is inscribed in a sphere of radius r.

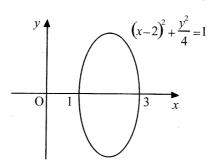


- (i) Show that the volume V of the cone is given by $V = \frac{\pi}{3} (r^3 + r^2x rx^2 x^3)$.
- (ii) Hence show that V is a maximum when $x = \frac{1}{3}r$.
- (iii) Find the ratio of the maximum volume of the cone to the volume of the sphere.
- (b)(i) By considering f'(x) where $f(x) = e^x x$, show that $e^x > x$ for $x \ge 0$.
 - (ii) Hence use Mathematical Induction to show that for $x \ge 0$, $e^x > \frac{x^n}{n!}$ for all positive integers $n \ge 1$.
- (c) The polynomial P(x) is given by $P(x) = x^3 + ax^2 + bx + c$ where a, b and c are real. The equation P(x) = 0 has roots α , β and γ . S_n is defined by $S_n = \alpha^n + \beta^n + \gamma^n$ for n = 1, 2, 3, ..., and it is given that $S_1 = S_3 = 3$ and $S_2 = 7$.
 - (i) Show that a = -3 and b = 1.
 - (ii) Find the value of c.

Question 6 (15 marks) Use a SEPARATE writing booklet

Marks

(a)



The region enclosed by the ellipse $(x-2)^2 + \frac{y^2}{4} = 1$ is rotated through one complete revolution about the y-axis.

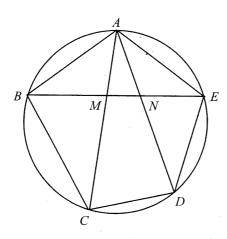
(i) Use the method of cylindrical shells to show that the volume V of the solid of revolution is given by $V = 8\pi \int_{1}^{3} x \sqrt{1 - (x - 2)^2} dx$

2

(ii) Hence find the volume of the solid of revolution in simplest exact form.

4

(b)



ABCDE, where AB = AE, is a pentagon inscribed in a circle. BE meets AC and AD at M and N respectively.

(i) Show that $\angle BEA = \angle ACE$.

2

(ii) Hence show that CDNM is a cyclic quadrilateral.

3

Marks

2

- (c) The polynomial P(x) is given by $P(x) = x^4 + bx^2 + 1$ where b is a real number. The equation P(x) = 0 has a real root α , where $\alpha \neq 0$.
 - (i) Express the other three roots of the equation P(x) = 0 in terms of α and deduce that all four roots are real.
 - (ii) Find the set of possible values of b.

Question 7 (15 marks) Use a SEPARATE writing booklet

- (a)(i) Show that the equation $z^7 1 = 0$ has roots $1, \omega, \omega^2, \omega^3, \omega^4, \omega^5$ and ω^6 , where $\omega = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$.
 - (ii) Hence show that the equation $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0$ has roots $\omega, \omega^2, \omega^3, \omega^4, \omega^5$ and ω^6 .
 - (iii) Find the value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.
 - (iv) Find the monic quadratic equation with numerical coefficients whose roots are $\omega + \omega^2 + \omega^4$ and $\omega^3 + \omega^5 + \omega^6$.
- (b) A particle of mass m is moving vertically in a resisting medium in which the resistance to motion has magnitude $\frac{1}{10}mv^2$ when the particle has velocity $v \, \text{ms}^{-1}$. The acceleration due to gravity is $10 \, \text{ms}^{-2}$.
 - (i) The particle is projected vertically upwards with speed $U \, \text{ms}^{-1}$. Show that during its upward motion, its acceleration $a \, \text{ms}^{-2}$ is given by $a = -\frac{1}{10} \left(100 + v^2 \right)$.
 - (ii) Hence show that its maximum height, H metres, is given by $H = 5 \ln \left(\frac{U^2 + 100}{100} \right)$.
 - (iii) The particle falls vertically from rest. Show that during its downward motion its acceleration $a \text{ ms}^{-2}$ is given by $a = \frac{1}{10} (100 v^2)$.
 - (iv) Hence show that it returns to its point of projection with speed $V \,\text{ms}^{-1}$ given by $V = \frac{10U}{\sqrt{U^2 + 100}}.$

Question 8 (15 marks) Use a SEPARATE writing booklet

Marks

- (a) Consider the function $f(x) = \sum_{k=1}^{n} (a_k x 1)^2$ where $a_1 > 0$, $a_2 > 0$, ..., $a_n > 0$ are real.
 - (i) Express f(x) in the form $f(x) = Ax^2 + Bx + C$ for real numbers A, B and C.
 - (ii) Show that $\sum_{k=1}^{n} a_k^2 \ge \frac{1}{n} \left(\sum_{k=1}^{n} a_k \right)^2$.
 - (iii) Hence show that $1^2 + 3^2 + ... + (2n-1)^2 \ge n^3$ and $1^4 + 3^4 + ... + (2n-1)^4 \ge n^5$.
- (b) Two players A, B play a game of chance comprising several turns in which each player throws a fair 6-sided die. The possible outcomes are a draw (A, B throw the same score), A wins (A's score is higher than B's) or B wins. The game is over when either player first records two wins. Let p_n be the probability the game ends on the n^{th} turn. Let q_n be the probability the game does not end in n or fewer turns.
 - (i) Explain why, on each turn, the probability that A wins is $\frac{5}{12}$.
 - (ii) Explain why $p_2 + q_2 = 1$.
- (iii) Explain why $p_n + q_n = q_{n-1}$, n = 3, 4, 5, ... and deduce that $\sum_{k=2}^{n} p_k = 1 q_n$, $n \ge 2$.
- (iv) Show that $q_n = \frac{25n^2 5n + 4}{4 \times 6^n}$ and $p_n = \frac{25(n-1)(5n-8)}{4 \times 6^n}$, $n \ge 2$.
- (v) What is the probability the game will never end? Justify your answer.