Student Number

2011 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

Staff Involved:

- PJR* GIC*
- MRB GDH
- KJL RMH
- GPF

105 copies

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Make sure your Barker Student Number is on ALL pages of your solutions
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- ALL necessary working should be shown in every question

Total marks – 84

- Attempt Questions 1 7
- All questions are of equal value
- Marks may be deducted for careless or poorly arranged working

AM FRIDAY 12 AUGUST

Total marks – 84 Attempt Questions 1–7 ALL questions are of equal value

Answer each question on a SEPARATE sheet of paper

Marks

Question 1 (12 marks) [START A NEW PAGE]

(a) The point P(x, y) divides the interval *AB* internally in the ratio 2:1 2 If *A* is the point (6, 1) and *B* is the point (12, -8), find the coordinates of P(x, y)

(b) Evaluate
$$\lim_{x \to 0} \left(\frac{\tan x}{3x} \right)$$
 2

(c) Use the table of standard integrals to evaluate
$$\int_{0}^{\frac{\pi}{2}} \sec \frac{x}{2} \tan \frac{x}{2} dx$$
 2

(d) Solve
$$\frac{x}{x-4} \le 2$$
 3

(e) Evaluate
$$\int_{-\frac{1}{4}}^{\frac{1}{4}} \frac{dx}{\sqrt{1-4x^2}}$$
 3

1

Question 2 (12 marks) [START A NEW PAGE]

(a) Find the acute angle between the curves $y = \log_e x$ and $y = 1 - x^2$ at the point P (1, 0) Give your answer correct to the nearest minute.

(b) The point
$$P(2ap, ap^2)$$
 is a point on the parabola $x^2 = 4ay$ with focus $S(0, a)$

(c) $\triangle ABC$ is inscribed in a circle as shown below. The tangent at *C* meets *AB* produced at *P* and the bisector of $\angle ACB$ meets *AB* at *Q*

- (i) Copy and complete the diagram
- (ii) Prove that PC = PQ 3

Question 3 (12 marks) [START A NEW PAGE]

(a) Let
$$f(x) = \ln(\tan x)$$
, where $0 < x < \frac{\pi}{2}$
Show that $f'(x) = 2 \operatorname{cosec} 2x$

(b) Use the substitution
$$x = 2\sin\theta$$
 to evaluate $\int_{0}^{1} \sqrt{4 - x^2} dx$ 3

(c) (i) State the domain and range of the function
$$f(x) = \cos^{-1} 2x$$
 2

(ii) Draw a neat sketch of the function
$$f(x) = \cos^{-1} 2x$$
 1
Clearly label all essential features

(iii) Find the equation of the tangent to the curve $f(x) = \cos^{-1} 2x$ at the **3** point where the curve crosses the *y*-axis.

Marks

Question 4 (12 marks) [START A NEW PAGE]

(a) (i) Show that
$$\sin(A + B) + \sin(A - B) = 2\sin A \cos B$$
 1

(ii) Hence, or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{4}} \sin 4x \cos 2x \, dx$$
 3

(b) If
$$f(x+2) = x^2 + 2$$
, find $f(x)$ 2

(c) The graph shown below represents the relationship between T, the temperature in C° of a cooling cup of coffee, and t, the time in minutes.

The rate of cooling of this coffee is given by $\frac{dT}{dt} = -k(T - A)$, where k and A are constants and k > 0.

(i) Show that $T = A + Be^{-kt}$ is a solution to the differential equation 1 $\frac{dT}{dt} = -k(T - A)$, given that B is a constant.

(ii) By examining the graph when t = 0 and $t \to \infty$, find the values of A and B 2

(iii) If the temperature of the coffee is $50^{\circ}C$ after 90 minutes, show that 2

$$k = -\frac{1}{90} \ln\left(\frac{14}{39}\right)$$

(iv) Hence, find the rate at which the coffee is cooling after 90 minutes. 1Give your answer correct to two significant figures.

Marks

2

Question 5 (12 marks) **[START A NEW PAGE]**

(a) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \cos x \sin^2 x \, dx$$
 2

(b) The volume of a sphere is increasing at the rate of $5 cm^3$ per second. **3** At what rate is the surface area increasing when the radius is 20 cm?

- (c) A particle moves in such a way that its displacement x cm from an origin O at any time t seconds is given by the function $x = 4 + \sqrt{3}\cos 3t \sin 3t$
 - (i) Show that the particle is moving in simple harmonic motion. 2

(ii)	Express $\sqrt{3}\cos 3t - \sin 3t$ in the form $R\cos(3t + \alpha)$, where α is acute	2
	and in radians.	

(iii)	Find the amplitude of the motion.	1

(iv) Find when the particle first passes through the centre of motion.

Question 6 (12 marks) **[START A NEW PAGE]**

(a) Show by induction that $7^n + 2$ is divisible by 3, for all positive integers *n* 3

(b) Given the function
$$f(x) = \frac{2x+1}{x-1}$$

- (i)Find any vertical and horizontal asymptotes1(ii)State the domain of the inverse function $f^{-1}(x)$ 1(iii)Sketch the graph of the inverse function $f^{-1}(x)$ 2
- (iii) Sketch the graph of the inverse function $f^{-1}(x)$ Clearly label all critical features of the inverse function $f^{-1}(x)$
- (c) A particle is moving along the *x*-axis so that its acceleration after *t* seconds is given by $\overset{\bullet}{x} = -e^{-\frac{x}{2}}$

The particle starts at the origin with an initial velocity of 2 cm/sec

- (i) If v is the velocity of the particle, find v^2 as a function of x 2
- (ii) Show that the displacement x as a function of time t is given by **3**

$$x = 4\log_e\left(\frac{t+2}{2}\right)$$

3

3

Question 7 (12 marks) [START A NEW PAGE]

(a) James is standing at the top A of a tower AB which is built on level ground.
 From point C, due south of the base B of the tower, the angle of elevation of the top A of the tower is 67°

From point D, which is 120m due east of point C, the angle of elevation of the top A of the tower is 51°

(i) Calculate the height of the tower AB (to the nearest metre)

(ii) James projects a stone horizontally from the top of the tower with velocity V m/s
If this stone lands at point D, find the value of V
(Give your answer correct to one decimal place)
You may assume the equations of motion are
x = vt cos θ and y = vt sin θ - 5t² (Do **NOT** prove this)

(Hint: Use point A as the origin)

Question 7 continues on page 9

(b) The point R(a, b) lies in the positive quadrant of the number plane.

A line through *R* meets the positive *x* and *y* axes at *P* and *Q* respectively and makes an angle θ with the *x*-axis.

(ii) Hence, show that the minimum length of PQ is equal to $\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$ 4

End of Question 7

End of Paper

Blank page

STANDARD INTEGRALS

$$\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \ n \neq -1 \ ; \ x \neq 0, \ \text{if} \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \ dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

 $\begin{bmatrix} 2 & \sec \frac{2k}{2} \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}}$ The square of the denomination of the denomin $\frac{u+w}{1} + \frac{u+w}{1} + \frac{u+w}{1+u+1} + \frac{u+w}{1+u+1} + \frac{u+w}{1+u+1} = \frac{u+w}{1+u+1}$ uestion 1 $(x-4)^{1} \times \frac{x}{x-4} \leq 2(x-4)^{1}$ - 2(12-1) $=\left(\frac{24+6}{3}, -\frac{16+1}{3}\right)$ m:n = 2:1 AR 12 2×(52-1) $2\left(\sec\frac{\pi}{4} - \sec 0\right)$ = (10 ⁻ - ²) . 1st method : $x^{2} - 4x \leq 2x^{2} - 16x + 32$ $\frac{2x_{12} + 1x_{6}}{3}$, $\frac{2x - 8 + 1x_{1}}{3}$ $(x-4) \propto \leq 2(x^2-8x+16) + 4 \leq x \leq 8, x \leq 5 \leq 2$ 0 < x2-12x +32 MATHEMATICS 20 August 2011 w I EXTENSION I TRIAL HSC (1) x = 7, $\frac{9}{5} \le 2$: critical points are x=t, 8 zeros are scat, x=8 not true 2nd Method graphical . x1<4 or x28 $\frac{x}{x-1} < 2$ Γ. × # 4 2. solve x = 2 because it is a zero of j. x²-12x +32 ≥0 true .. x.et the denominator 1 x 54, 30.78 (x-4)(x-8) 70 C = 2x-8 JC = 8 at $x_{=1}$, $m_{1} = y'_{1} = \frac{1}{1} = \frac{1}{2}$ $x_{=1}$, $m_{2} = y'_{2} = -2x_{1} = -2$ $e) \int_{\frac{1}{4}}^{4} \frac{dx}{\sqrt{1-(2x)^{2}}}$ a) $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$ ۲' = ¹ - ۲ ۲' = 1 - ۲ : tan 0 " : x<4 or x 78 $= \frac{1}{2} \int_{-1}^{4} \frac{2 \, dx}{\sqrt{1 - (2x)^{2}}}$ = 1 (str., 7 + str., 7) 4+ [25 - 25] +1 +4 Question 2 = + × 2 × 5 + 1 tan 8 = 3 ~|=| 0 = tax' 3 = 71° 34' y=1-22 y=-28 -- |w = 1+5 y value -- d, = <u>ap</u> units IV) Distance of A from x - axis in) A lies on the parabola 11) Cradient of OP = ap -0 i) $M = \left(\frac{0+2ap}{2}, \frac{0+ap}{2}\right)^{1/2}$ $i^{f} x = a\rho, \quad y = \frac{(a\rho)^{2}}{4a} = \frac{a\rho^{2}}{4}$ how y' = f since chirds are 2 parallel Ś · A (ap, <u>ap</u>) : Mop + p 1 0 0 X $M = (ap, \frac{ap}{2})$ y + 22 = 22 $x^{-4}ay = y^{-2}x^{-4}ay$ oc = ap < ((, a) a //) ھ ص p(2ap, 4p2) 1, × 2ap -0 parallel

ilternate segment equals angle H LACQ = LQCB = & SIN istance from A (ap, ap) t is easiest to prove that between chord and tangent) ca is the bisector LACP = LCAP Ē M and the X-axis. $\sqrt[n]{0} + \left(\frac{ap}{4} \right)^{2}$ $\left(\frac{ap}{2} - \frac{ap}{2} \right)^{\nu} + \left(\frac{ap}{2} - \frac{ap}{4} \right)^{\nu}$ To prove that PC = PQ $M\left(a\rho, \frac{a\rho}{2}\right)$; 5 ··· ¿·CAB = 13 (angle in the let 2 BCP = B A is equidistant from + 02 n = distance di 2.4 from sc-axis now L Cap = d+B (exterior a) f.(") - <u>zec s</u> f.(") LACP - of + B (adjacent ongles) CHS when x=0, 0=0 -. PC = PQ (equal sides : APCA is isosceles (base : L Car = Lacr b) x=251ng ශ්⊀ - 2 භා∷්ටි ශ්පී r cos^v 7C COXXX 2122 angles one equal) 7= 8 vs , 1= x = <u>2</u> Sin 27L angle of DARC) in isosceles A) 1 x 1 " RHS = 2 cosec 27C 2 2 WIR SUN N 5 X 5 S tanoc r f(x) , 0 = ₽ * 5, V+(1-5~ v) x 2000 d0 c) i) $f(x) = \cos^{-1} 2x$ $= 4 \int_{0}^{\frac{1}{2}} \frac{1+\omega s^{2}}{2} d\theta$ " 4 St cos v 8 d 8 ت (لل 2 cos ک × 2 cos ک do - 5 # 1400 x 2 co 2 do $\int_{-\infty}^{\infty} \sqrt{4 - (2 \sin \theta)^{2}} \times 2 \cos \theta \, d\theta$ Range: 05y=TT $\frac{1}{2} \left[0 + \frac{1}{2} + \frac{1}{2} \right]_{1}^{2}$ 100 cos 0 = 1+ wird Domain: -1 < 255 < 1 -2 < 55 < 2 1 3 4 2 2 $= 2\left(\frac{\pi}{6} + \frac{s\sqrt{\pi}}{2} - 0 - 0\right)$ 2(モ+玩) = 2 5° 1+0528 48 a) i) LHS = SNA cos B + cos A SNB :: Eqn of tangent y-王 = -Z (oc-o) y-王 = -Z n $\binom{1}{2} \frac{1}{2} sn4x cos2x dx$ $a^{\dagger}\left(0,\frac{\pi}{2}\right)$ $f'(0) = -\frac{2}{2} = -\frac{1}{2} = -\frac{1}{2}$ Question 4 . AtB = 6x A - B = 2x A=4x B=2x in) Curadient of tangent ٦ + SNA cos B - cos X Sm B (or y = -2兆+亚) 22+19-1= =0 = 2 su A cos B - RH S $f'(n) = \frac{-2}{\sqrt{1-(2n)^2}}$ = <u>- 2</u> <u>\-4x</u> N y = دهه' ۲۰

= $\frac{1}{3}$) $\frac{15t \text{ method}}{2}$: $f(\alpha+2) = (\alpha+2)^{2} - 4\alpha - 2$ $\int_{1}^{2} (\alpha+2)^{2} - 4\alpha - 2$ $\int_{1}^{2} (\alpha+2)^{2} + (\alpha+2)^{2}$ $f(\alpha+2) = (\alpha+2)^{2} - 4(\alpha+2) + 2$ $(replace (\alpha+2) \text{ with } \alpha)$ $\frac{2nd \text{ method}}{2}$: $f(\alpha) = f((\alpha-2)^{2} + 2)$ $= \alpha^{2} - 4\alpha^{2} + 4 + 2$ $= \alpha^{2} - 4\alpha^{2} + 4$	$\frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\sin 6x + \sin 2x}{6} \frac{dx}{2}$ $\frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\cos 6x}{6} - \frac{\cos 2x}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{6}$ $\frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\cos 2\pi}{6} + \frac{\cos 2\pi}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{6}$ $\frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\cos 2\pi}{6} + \frac{\cos 2\pi}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{6}$
sub a = -1, 3 = A + B + C A + B = -3 solve simultaneously A + B = -2 D - B A = 1 B = -1 f(a, + z) - + (a + z) + 6 f(a, + z) = (a + z) - 4(a + z) + 6 f(x) = 2c - 4x + 6 f(x) = 2c - 4x + 6 T = A + Bz - kx $\frac{dT}{dk} = -k(T - A)$ $\frac{dT}{dk} = -k(T - A)$	$\frac{3 \operatorname{red} \operatorname{method}}{\operatorname{seq} \operatorname{method}};$ $\operatorname{Equake -3C+2 = A(3+2)} + B(3+2) + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$ $\operatorname{sub} x = 0, 3 = 0 + 0 + 2 + 0 + C$
11) from graph $t=0$, $T=100^{\circ}$ sub $t=0$, $100 = A + 15z^{\circ}$ $as t=av$, $T > 22^{\circ}$ $as t=av$, $T > 22^{\circ}$ $and 3 = T \times$ $and 3 = T \times$ $50 = 22 + T \times z^{-100}$ $50 = 22 + T \times z^{-100}$ $50 = 22 + T \times z^{-100}$ $z \times = T \times z^{-90}$ $z \times = T \times z^{-90}$	$Me + hod 2$ $T = A + B e^{-K^{+}}$ $show + hat \frac{dT}{dk} = -k(T - A)$ $LHS = \frac{dT}{dk} = -B k e^{-kt}$ $RHS = -k (A + B e^{-kt} - A)$ $= -k (B e^{-kt})$ $= -B k e^{-kt}$
$\begin{array}{c} a \\ a \\ c \\$	iv) Rate is $\frac{dT}{dk} = -k(T-k)$ $\frac{dT}{dk} = -k(T-k)$ $\frac{dT}{dk} = \frac{1}{q_0} \log(\frac{14}{3q}) (50-2k)$ $= -0.31 & 7$ $= -0.31 & 7$ $= -0.31 & 7$ $(+k-2) \sin(\frac{1}{3}g)$

when $r = 20$ cm $\frac{dA}{r} = \frac{10}{20} = \frac{1}{2}$ $\frac{dA}{r} = \frac{1}{20} = \frac{1}{20}$ $\frac{dA}{r} = \frac{1}{20} = \frac{1}{20}$ $\frac{dA}{r} = \frac{1}{r} = \frac{1}{20}$ $\frac{dA}{r} = \frac{1}{r} = \frac{1}{20}$	$\frac{\partial A}{\partial k} = \frac{\partial A}{\partial r} \times \frac{\partial L}{\partial t}$ $\frac{\partial A}{\partial t} = 8 \pi r$ $\frac{\partial A}{\partial t} = 8 \pi r$ $\frac{\partial A}{\partial t} = 8 \pi r$
Since $-1 \le \cos(\pi + \pi_{c}) \le 1$ then so can be between (4+2) un and $(4-2)$ cm $ie = 2 \le 2 \le 6$ the centre is $x = t$ $2 \cos(3 \pm t\pi_{c}) = 1$ $2 \cos(3 \pm t\pi_{c}) = 1$ $2 \cos(3 \pm t\pi_{c}) = 0$ 4) + 36 $3 \pm t\pi_{c} = \pi$ $3 \pm t\pi_{c} = \pi$	$(2):(1) \tan \alpha = \frac{1}{\sqrt{3}}$ $\alpha = \tan^{2}(\frac{1}{\sqrt{3}}) = \frac{1}{\sqrt{2}}$ $R = \sqrt{(3)^{2} + 1^{2}} = \sqrt{4} = 2$ $2 \cos^{2}(3t + \frac{1}{\sqrt{2}})$ $(1) = 30, \pi = 4 + 2\cos^{2}(3t + \frac{\pi}{2})$
statement true for $n=1$ Assume true for $n=K$ where IC is an integer >1 i.e. $TK+2 = 3N$ how prove true for $n= C+1 $ TK+1+2 = 3M where M is = TK+1+2 = TXTK+2 = TXTK+2 = TXTK+2 = 21N - 14 + 2 = 3(TN - 14 + 2) = 3(TN - 4) = 3(TN - 4) = RHS statement is true for $n= C+1 $ It is true for all positive 1n=Rears n	Question 6 a) show that 71°+2 = 3.N where N and n are integers both 71 Prove true for n=1 LHS = 71°+2 = 9 = 3×3 = RHS for N
$y = 2 is horiz. asymptotei) Domain of f^{-1}(x) is thesame as range of f(x)iii) Sketch y = f^{-1}(x)iii) Sketch y = f^{-1}(x)is -1for y = f(x) the y-interceptis -1is -$	b) i) $f(x) = \frac{2x+1}{2x-1}$ vertical asymptotic $x = 1$ (as $x - 1 \neq 0$) horizontal asymptotic $\lim_{x \to \infty} \frac{2x+1}{x-1}$, $\lim_{x \to \infty} \frac{2x}{x-1}$ $\lim_{x \to \infty} \frac{2x+1}{x-1}$, $\lim_{x \to \infty} \frac{2x}{x-1}$

$$\begin{array}{c} \frac{1}{2} \sqrt{1 + \left(\int_{-\infty}^{\infty} \frac{1}{2} \sqrt{1 +$$

- 16 -

$$a \le w^{3}\theta = b \cos^{3}\theta$$

$$fan^{3}\theta = \frac{b}{a}$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$= (a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$= (a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$(a^{3}+b^{3})^{3}(a^{3}+b^{3})$$

$$= (a^{3}+b^{3})^{3}(a^{$$