

Student Number: .....

# **2011** YEAR 12 TRIAL HSC EXAMINATION

# MATHEMATICS

# THURSDAY 4<sup>TH</sup> AUGUST

**Staff Involved:** 

- KJL TZR
- GPF DZP
- RMH GIC
- BJB\* AJD
- JGD\*

110 copies **General Instructions Total marks - 120 Reading time – 5 minutes** • **Attempt Questions 1 - 10** • All questions are of equal value Working time – 3 hours • **BEGIN your answer to EACH** Write using blue or black pen ٠ **QUESTION on a NEW PIECE of the** separate lined paper • Write your Barker Student Number on all pages of your answers • Write only on ONE SIDE of the separate lined paper ٠ **Board-approved calculators may be used** A Table of Standard Integrals is • provided at the back of this paper which may be detached for your use • ALL necessary working MUST be shown in every question • Marks may be deducted for careless or badly arranged working

-BLANK PAGE -

#### Total marks - 120 Attempt Questions 1 - 10 All questions are of equal value

## Answer each question on a separate A4 lined sheet of paper.

| Questi | ion 1 (12 marks) [START A NEW PAGE]                                                 | Marks |
|--------|-------------------------------------------------------------------------------------|-------|
| (a)    | Evaluate, to 3 significant figures, $\frac{\sqrt{9^2 + 144}}{14 - 3}$               | 2     |
| (b)    | Simplify fully $\frac{3}{x+3} - \frac{1}{x-3}$                                      | 2     |
| (c)    | If $\frac{14}{3+\sqrt{2}} = a+b\sqrt{2}$ , find the values of <i>a</i> and <i>b</i> | 2     |
| (d)    | Solve $ 4x - 1  = 3$                                                                | 2     |
| (e)    | Factorise fully: $2x^3 - 54y^3$                                                     | 2     |
| (f)    | Given $\log_a 3 = 0.6$ and $\log_a 2 = 0.4$ , find $\log_a 18$                      | 2     |

# End of Question 1



The coordinates of the points A, B and C are (-3, -2), (1, 0) and (5, -2) respectively 1 (i) Calculate the length of the interval AB Find the gradient of the line AB 1 (ii) (iii) Show that the equation of line *l*, drawn through C parallel to AB is x - 2y - 9 = 01 Find the coordinates of D, the point where *l* intersects the *x*-axis 1 (iv) What is the size of the acute angle (to the nearest degree) made by the line AB (v) with the positive direction of the *x*-axis? 1 (vi) Hence, determine the size of  $\angle ABD$ 1 Find the perpendicular distance of the point A from the line l2 (vii) (viii) Find the area of quadrilateral ABDC 2 (ix) Sketch the line *l* and shade the area satisfied by the following simultaneously 2  $x \ge 0$ ,  $y \le 0$ ,  $x - 2y - 9 \ge 0$ 

#### **End of Question 2**

Marks

#### **Question 3** (12 marks) **[START A NEW PAGE]**

- (a) Differentiate with respect to *x*:
  - (i)  $3\tan x$  1

(ii) 
$$(5-2x)^7$$
 2

(b) Find:

(i) 
$$\int_{0}^{1} 3\sqrt{x} \, dx$$
 2

(ii) 
$$\int \frac{8x+10}{2x^2+5x} dx$$
 2

(c) A curve y = f(x) has the following properties in the interval  $a \le x \le b$ : f(x) > 0, f'(x) > 0, f''(x) < 0Sketch a curve satisfying these conditions.



In the diagram, AB = AE,  $AC \parallel DF$ ,  $\angle ABG = 146^{\circ}$  and  $\angle AED = x^{\circ}$ 

- (i) Copy this diagram into your writing booklet and place all the information **1** onto the diagram.
- (ii) Find the value of *x*, giving complete reasons.

#### **End of Question 3**



(c) Is 
$$f(x) = \frac{3^2 + 3^2}{2x^2}$$
 an odd function or an even function? 2

Give reasons for your answer.

(d) Solve 
$$2^{2x} - 9(2^x) + 8 = 0$$
 3

# **End of Question 4**

Marks

## Question 5 (12 marks) [START A NEW PAGE]

| (a) | Cons  | sider the function $f(x) = x^3 + 6x^2 + 9x + 4$ in the domain $-4 \le x \le 1$                                   |   |
|-----|-------|------------------------------------------------------------------------------------------------------------------|---|
|     | (i)   | Find the coordinates of any stationary points and determine their nature.                                        | 3 |
|     | (ii)  | Determine the coordinates of its point(s) of inflexion.                                                          | 2 |
|     | (iii) | Draw a sketch of the curve $y = f(x)$ in the domain $-4 \le x \le 1$ clearly showing all its essential features. | 2 |
|     | (iv)  | What is the maximum value of the function $y = f(x)$ in the domain $-4 \le x \le 1$ ?                            | 1 |
|     |       |                                                                                                                  |   |

(b) Find the equation of the tangent to  $y = \ln(3x + 1)$  at the point (2, 5) 2

(c) Solve 
$$\log_7 x^2 = 3$$
 2

# End of Question 5

| Quest | ion 6 | (12 marks) [START A NEW PAGE]                                                            | Marks |
|-------|-------|------------------------------------------------------------------------------------------|-------|
| (a)   | If s  | $\sin\theta = -\frac{8}{17}$ and $\tan\theta > 0$ , find the exact value of $\cos\theta$ | 2     |
| (b)   | The   | first four terms of a sequence are 3, 6, 9, 12                                           |       |
| (0)   | (i)   | Show that 102 is a term of this sequence                                                 | 2     |
|       | (ii)  | Hence, or otherwise, find the sum of the terms of this sequence<br>between 100 and 200   | 3     |
| (c)   | (i)   | Show that $y = x^2 - 4x$ and $y = 2x - 5$ intersect when $x = 1$ and $x = 5$             | 2     |

(ii) Hence, find the shaded area below



End of Question 6

Question 7 (12 marks) [START A NEW PAGE]

(a) Evaluate 
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
 2

- (b) The curve  $y = ax^3 + bx$  passes through the point (1, 7). The tangent at this point is parallel to the line y = 2x 6. Find the values of a and b.
- (c) Find the equation of the locus of P(x, y), if P is always equidistant from A(3, 1)and B(1, 3). Give a geometric description of this locus. 3
- (d) A retirement fund pays 8% per annum compound interest on the money invested in it. What investment must a worker make at the beginning of each year if he wishes to retire with a lump sum of \$200 000 after 25 years (with his last investment at the beginning of the 25<sup>th</sup> year)?

3

**End of Question 7** 

## [START A NEW PAGE]



For the above graph, write down:

(iii) a possible equation of the function 1

(b) Given that 
$$\frac{d}{dx}(xe^x) = xe^x + e^x$$
  
evaluate  $\int_0^2 \frac{xe^x}{2} dx$  3

# (c) Use the trapezoidal rule with 5 function values to find an approximation to $\int_{0}^{2} \frac{1}{x+1} dx$

(d) Show that 
$$\frac{\cos\theta}{1-\sin\theta} - \frac{\cos\theta}{1+\sin\theta} = 2\tan\theta$$
 3

## End of Question 8

Marks

#### Question 9 (12 marks) [START A NEW PAGE]

- If p, q and 32 are the first three terms of a geometric sequence and q, 4, p are the (a) first three terms of another geometric sequence, find p and q.
- (b) (i) Sketch the curve  $y = \log_e x$ 
  - The curve  $y = \log_e x$ , between x = 1 and x = e, is rotated  $360^{\circ}$  about (ii) the y-axis. Find the exact value of the volume of the solid formed.
- (c) An ornamental arch window 2 metres wide at the base and 2 metres high is to be made in the shape of a cosine curve. Find the area of the window in terms of  $\pi$ ,

if 
$$y = 2\cos\left(\frac{\pi}{2}x\right)$$
. 3



**End of Question 9** 

Marks

4

1

#### **Question 10** (12 marks) **[START A NEW PAGE]**

- (a) During the normal operation of a petrol driven engine, the volume V litres of petrol left in the tank reduces at a rate  $\frac{dV}{dt} = -3e^{0.4t}$  where t is measured in minutes since the engine was switched on and the 100 litre tank was full.
  - (i) At what rate is the petrol used, initially? 1
  - (ii) Use integration to show that volume remaining can be expressed as

$$V = \frac{-30}{4}e^{0.4t} + 107.5$$

(iii) How long can the machine operate until the tank is only half full? Give your answer correct to the nearest minute.

#### (b) (i) Find the value of x for which the function

$$y = \frac{x^2 - x + 2}{x^2 - x + 1}$$
 is equal to  $\frac{7}{3}$ .

(ii) Show that the function 
$$\frac{x^2 - x + 2}{x^2 - x + 1}$$
 can never exceed  $\frac{7}{3}$  3

(iii) Hence, the range of this function must be  $a < y \le \frac{7}{3}$ Find the value of *a*.

#### **End of Question 10**

#### **End of Paper**

2

# STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$  $\int \frac{1}{x} dx = \ln x, \quad x > 0$  $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$  $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$  $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$  $\int \sec^2 ax \ dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$  $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$  $\int \frac{1}{a^2 + r^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$  $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$  $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$  $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$ 

NOTE: 
$$\ln x = \log_e x, \quad x > 0$$

| $f. \log_{a}   g = \log_{a} (3^{2} \times 2)$ $f. \log_{a}   g = \log_{a} (3^{2} \times 2)$ $f. \log_{a}   g = \log_{a} (3^{2} \times 2)$ $f. \log_{a} (3^{2} \times 2)$ | $\therefore x = -\frac{1}{2}, 1$ e. $2x^3 - 54y^3 = 2(x^3 - 27y^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 x = 1 = 3 $4 x = 1 = 3$ $4 x = 4$ $4 x = -2$ $x = -1$ $x = -2$ | .: a=6, b=-2<br>d. 14x-1 = 3 | = 2(3-12)<br>: 6-212 = a+b12                  | = 14(3-VZ)<br>= 14(3-VZ) | c. = 14 x 3-V2                                                              | $\frac{3\alpha - 9 - 3\alpha - 3}{2\alpha^2 - 9}$                                                                       | = 1.36 (3 sig. fig)<br>b. = 3 (x-3) - (x+3)<br>(x+3)(x-3)                                    | Question 1<br>a. 15<br>= 1.3636                                                                                                        | 2 Unit Mathematics Trial F |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|-----------------------------------------------|--------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| vi. <abd -="" 180°="" 27°<br="" =="">= 153°</abd>                                                                                                                                                                                                                     | : 0 = 27° (to rearest degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v. m=tan0<br>:: tan0= 2<br>D = 26°33'54"                         | ل: D(م'b)<br>اء≈ ط           | iv. z-intercepts occur when y=0<br>x-2(0)-9=0 | : x - 2y - 9 = 0         | $\frac{1}{1}$ , $m = \frac{1}{2} c(s_{1}-2)$<br>$y + 2 = \frac{1}{2}(2c-s)$ | $\frac{1}{1+3} = \frac{1}{2}$                                                                                           | d = 1/614<br>d = 120<br>d = 215                                                              | Question 2<br>$\lambda = \sqrt{(1+3)^2 + (0+2)^2}$                                                                                     | aper 2011 - Solutions      |
| $\frac{d}{dx} (5-2x)^{\frac{1}{2}} 7(5-2x) \times -2$ = -14 (5-2x) <sup>6</sup>                                                                                                                                                                                       | <u>Question 3</u><br>a. <i>i.</i> <u>d</u> (3tonse) = 3sec <sup>2</sup> sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 ≤ b-he-20 '0 ≤ 30 '0 ≤ 30                                      |                              | ix x x                                        | = 16 unito <sup>2</sup>  | viii Area = A dist x AB<br>= & x 215                                        | ري<br>م<br>: ۰<br>: ۲                                                                                                   | $d = \frac{\sqrt{(1)^{2} + (-2)^{2}}}{\sqrt{1 + 4}}$ $d = \frac{\sqrt{1 + 4}}{\sqrt{1 + 4}}$ | $v_{ii}^{2} = \frac{ a_{0}c_{+}b_{0}+c_{-} }{\sqrt{a_{1}^{2}b_{-}^{2}}}$ $d = \frac{ (-3)+(-2)(-2)+(-4) }{ a_{1}^{2}+b_{-}^{2}+(-4) }$ |                            |
| $(co-int < \dot{s}_{i} AclIDF)$<br>:: $34^{\circ} + 34^{\circ} + 2c^{\circ} = 180^{\circ}$<br>$2c = 112^{\circ}$                                                                                                                                                      | ii. < ABE= 34° (angle sum st.line)<br><abe=<aeb(base 1505="" 2's="" a)<br="" of=""><abe (laeb+ldea)="180°&lt;/td" +=""><td>oc of</td><td>G 146° × ×</td><td>d. ż.</td><td>5-</td><td>C. J 2x2+5x</td><td><math display="block">\int \frac{1}{2\alpha^2 + 5\alpha}</math><br/>= <math>2 \int \frac{4\alpha + 5}{\alpha} d\alpha = 2 \ln (2\alpha^2 + 5\alpha) + 6</math></td><td>= 2-0<br/>+ 2</td><td>b. i. <math>\int_{0}^{\infty} 3\sqrt{x}  dx = \begin{bmatrix} 3x^{-\frac{1}{2}} \\ 3/2 \end{bmatrix}_{0}^{\frac{1}{2}}</math></td><td>μ<br/>μ</td></abe></abe=<aeb(base> | oc of                                                            | G 146° × ×                   | d. ż.                                         | 5-                       | C. J 2x2+5x                                                                 | $\int \frac{1}{2\alpha^2 + 5\alpha}$<br>= $2 \int \frac{4\alpha + 5}{\alpha} d\alpha = 2 \ln (2\alpha^2 + 5\alpha) + 6$ | = 2-0<br>+ 2                                                                                 | b. i. $\int_{0}^{\infty} 3\sqrt{x}  dx = \begin{bmatrix} 3x^{-\frac{1}{2}} \\ 3/2 \end{bmatrix}_{0}^{\frac{1}{2}}$                     | μ<br>μ                     |

| vestion 4              | d. $2^{2x} - q(2^{x}) + 8 = 0$          | Ω = Ω <sup>(coc)</sup> = Ω   | د - ۲<br>در - ۲                |
|------------------------|-----------------------------------------|------------------------------|--------------------------------|
| R                      | let u= 2°c                              | 626412 = 0                   |                                |
| 1                      | 0= 8+ nb -2n                            | 60c = -12                    | z = + 2                        |
| 5                      | (u-1)(u-1) = 0                          | 2 2                          | x <sup>e</sup> = 343           |
| liso                   | 1 & = N ::                              | -189t                        | 2 = + 1343                     |
| L<br>8<br>8            |                                         | × -3 -2 -1                   |                                |
| 3= 52+3= 2×5×3× COSISO | : 2°= 8 = 2°= 1                         | <u>μ</u> (2) -6 0 6          | Question 6                     |
| 52= 59.98076211        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | concertify ? V               | \$                             |
| S= 7.7 (1d.p)          | x=3 x=0                                 |                              | 17 8 S A                       |
|                        | : > = 0 3                               | f(-2) = 2                    | 0                              |
| i. AB=9.5-2×3.5        |                                         | : of of inflexion at (-2,2)  | G (                            |
| " 2.S                  | Questions                               | C                            | ±1 = () SOJ ::                 |
|                        | a. $f(x) = x^3 + 6x^2 + 9x + 4$         | jui fron                     |                                |
| in Laro                | $f(cc) = 3cc^2 + 12cc+9$                | 10                           | b. 3, 6, 9, 12                 |
| 0<br>"<br>ז >          | f"(oc) = (oc + 12                       |                              | $\lambda$ . The $a + (n-1)d$   |
| 0 = 25                 |                                         |                              | 102 = 3 + (n-1)3               |
| ez<br>Ón               | $i, f'(\infty) = 0$                     |                              | 102 = 37                       |
| 0 = 7 radiano          | 300-211200+9=0                          |                              | n = 34                         |
|                        | 3(2+3)(2+1)=0                           | -2 -3 -2 -1 2                |                                |
| i. Area = 2r20         | : )                                     |                              | ii T24 = 102                   |
| 11 × 20 0 × 12 11      |                                         | iv. max value = 20           | T66 = 198                      |
| " 35 Cm 2              | when x=-1, f(-1)=0                      |                              | $S_n = \frac{n}{2}(a+l)$       |
|                        | p"(-1) = 6x(-1) +12                     | b. $y = ln(3c+1)$ at $(2,s)$ | $= \frac{3}{23} (102 \pm 103)$ |
| f(a) = 3 + 3           | = 6                                     | a_ C<br>"                    | " 4950                         |
| 202                    | نه مار (۱۰) م                           | doc Boct                     |                                |
| f(-a) = 3-a + 3a       | min turning point (-1,0)                | when oc = 2                  | c. i. $y=x^2-Ax$               |
| 2(-a)*                 |                                         | du = 3                       | y = 200-5                      |
| "<br>(29+02)<br>"      | when 2c= -3, f(-3)= 4                   | doc 3x2+1                    | : x - Ayc = 2x - 5             |
| 202                    | f"(-3) = 6×(-3)+12                      | 4<br>1<br>1                  | $x^2 - 6 - 6 = 0$              |
| f(a) = f(c-a)          | = -6                                    | Ł                            | $(\infty - S)(\infty - 1) = O$ |
| : even function        | · f"(-3) 20 )                           | $y = 5 = \frac{1}{2}(x-2)$   | : 22 - 57 - 1                  |
|                        | : max turning point (-3, A)             | 74-35 = 326-6                | :. (1,-3), (5,5)               |
|                        | 0                                       |                              |                                |

| ::a=-5 b= 19 | 0=19     | :                                   | 7                              | 2<br>                          | -20=5          | 3a+b=2               | t=dta | -  | 2 = 30 +6 | $a = 3a(1)^2 + b$ | y'= 2 when oc= 1 | y'= 300c2 + 6           |                                                                                                              | 7=0+0                | $\overline{T} = \alpha(1)^3 + b(1)$ | b. y=acoc those (1,7) |          | N.                          | 2.⇔23                               | = lim (octo) | x+3 (x-3)                      | a lim $(\infty - 3)(\infty + 2)$        | Question 7      |            | = 10 2 0 ° 2 | ( = + = 25 ) =             | - 32-520-3 | ster ' -                                | = 1 60c-5-2c <sup>2</sup> doc                           | 05       | ii $A = \int (2c-s) - (2c^2 - 4c) dc$ |
|--------------|----------|-------------------------------------|--------------------------------|--------------------------------|----------------|----------------------|-------|----|-----------|-------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-----------------------|----------|-----------------------------|-------------------------------------|--------------|--------------------------------|-----------------------------------------|-----------------|------------|--------------|----------------------------|------------|-----------------------------------------|---------------------------------------------------------|----------|---------------------------------------|
|              |          | -                                   |                                |                                |                |                      |       |    |           |                   |                  |                         | M=\$2533.11                                                                                                  | M = 2533.107         | (1-2280.1)80.1                      | M = 200 000 ×0.08     | 80.0     | 200000 = M× 1.08 (1.0825-1) | 200 000 = M (1.08+1.002 + + 1.0022) |              | 2nd A2 = M× 1.0825 + M× 1.0824 | $1^{s+}$ $A_{1} = M \approx (108)^{2s}$ | a.              | <i>G</i> . | avadient = 1 | : y= x                     | ADC-AY = O | 2 - 6 - 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | $\sqrt{(2c-3)^2 + (y-1)^2} = \sqrt{(2c-1)^2 + (y-3)^2}$ |          | c. PA= PB                             |
|              | 1 -sin20 | = coso + cososino - coso + cososino | $(1-\sin\theta)(1+\sin\theta)$ | = (050(1+ sin0) - cos0(1-sin0) | 0 nis+1 Guis-1 | d. LHS = COSE _ COSE |       | N  | = 1.1166  | 60                | 1 2 2            | 11<br>4-4-<br>×<br>10-4 | $A = \frac{1}{2^{2}} \left[ 1 + \frac{1}{3} + 2\left(\frac{3}{3} + \frac{1}{3} + \frac{5}{3}\right) \right]$ | -<br>-<br>-          | CS                                  | × 0 1-1-1 2           |          | c. ) 20+1 000               | p 2 1                               | = 2 (e 2+1)  | = 2 (2e -e3)-(0-1              |                                         | zerdoc= 2 xeres |            | : See s      | 0 doc (3- 10) - 5- 10 + 10 |            | iii. y= 3sin2x                          | ii. 3                                                   | a. i. TT | Question 8                            |
|              |          |                                     |                                |                                |                | 8= 6 12=d:           | p=2   | οφ | 0=16      | sub q=8 into (2)  | 6 : 8            | q.3 = S12               | 9 = 22 = 10<br>0 = 10                                                                                        | sub (1) obri (1) dus | <i>40</i>                           | @ 91 = d ::           | 16 = 091 | 0-7<br> 4_<br> 4_           | D                                   | q2= 3210 0   |                                |                                         | 0 1 P           | a. 00 32   | Question 9   | 11 KTU                     | = 2ton0    | යාවෙ                                    | " 2 sine                                                | cos ී ල  | = 2000 sin0                           |

| - ر بی<br>ب                                   | : graph will not exceed y= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = Sh Gmin                                       |                                                      |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
|                                               | : max at ac = 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 S.09                                          | : A = 8 4 2 A                                        |
|                                               | slope / 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,4                                             | = 7 (1-0)                                            |
|                                               | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + = 109 323                                     | - The lain = - sino                                  |
|                                               | 8<br>0<br>2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-41 = 100 33                                   | р<br>1                                               |
|                                               | test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ç                                               | = 4 The sin = 22 Jo                                  |
|                                               | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\log_{e} e^{\alpha t} = \log_{e} \frac{23}{3}$ |                                                      |
|                                               | -20c+1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( 0.44<br>" (3))                                | A=2 2 aces = 2 oc                                    |
|                                               | $(2c^2-2ct^{-1})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | л.<br>2                                         | , C                                                  |
|                                               | - 22+1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -57.5 = -30 e 0.41                              | c. y=2cos(晋本)                                        |
|                                               | start pts occur when y'= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ą.                                              |                                                      |
|                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.5 - 30 e + 107.5                            | ···V=王(e <sup>2</sup> -1)い                           |
|                                               | $(2c^{2}-2c+1)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                               | = = = = = = = = = = = = = = = = = = = =              |
|                                               | y' = -2x+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. V= - 30 eout + 107.5                         |                                                      |
|                                               | (2c2-2c+1)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :-C = 107:5                                     | TH CL                                                |
|                                               | $y' = (2\alpha - 1)(\alpha^2 - \alpha + 1 - 2c^2 + 2c - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | لر                                              | 1 1 1 2 2                                            |
|                                               | $(2c^2-2c+1)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 = - 30 00 + 0                               | = TT / e dy                                          |
|                                               | y' = (2x-1)(x2-2c+1) - (2x-1)(x2-2c+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v = v, $v = 100$                                | 1 24                                                 |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                               | $V = \pi \left( \left( e^{4} \right)^{2} dy \right)$ |
|                                               | V = 20c-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : V = - 30 e orat +C                            | -                                                    |
|                                               | $V = 2c^2 - 2c + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01                                              | 8 C.<br>%<br>4                                       |
|                                               | $v^2$ $u' = 2\alpha - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 , OA+ + C                                     | i u=lnoc                                             |
| -2                                            | $\frac{1}{12}$ | = -3 e df                                       |                                                      |
| : a "                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ü. V= J-3e°-4t                                  |                                                      |
| 1)                                            | 2 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                               |                                                      |
| 2-> 200 1 - 5c + 22                           | (20c-1)(20c-1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dr "-3e"                                        |                                                      |
| = lim 1 - 2+ + 2=                             | $4\alpha^2 - 4\alpha t = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | when f=0                                        |                                                      |
| 2                                             | 30c <sup>2</sup> 30c+6 = 7cc <sup>2</sup> -7cc+7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dr.                                             |                                                      |
| x == 20 00 == 200 + 1                         | x2-x+1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a. i. dv = - 300.4x                             |                                                      |
| $iii$ . $\lim_{\infty} \infty^2 - \infty + 2$ | b. i $2c^2 - 2ct^2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Question 10                                     | 8                                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | £                                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                                      |