\qquad
Student Name: \qquad

Teacher's Name:

\qquad

ABBOTSLEIGH

AUGUST 2011

YEAR 12
ASSESSMENT 4

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes.
- Working time - 2 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided with this paper.
- All necessary working should be shown in every question.

Total marks - 84

- Attempt Questions 1-7.
- All questions are of equal value.
- Answer each question in a separate writing booklet.

Outcomes assessed

Preliminary course

PE2 uses multi-step deductive reasoning in a variety of contexts
PE3 solves problems involving inequalities, polynomials, circle geometry and parametric representations
PE4 uses the parametric representation together with differentiation to identify geometric properties of parabolas
PE5 determines derivatives which require the application of more than one rule of differentiation
PE6 makes comprehensive use of mathematical language, diagrams and notation for communicating in a wide variety of situations
HSC course
HE2 uses inductive reasoning in the construction of proofs
HE3 uses a variety of strategies to investigate mathematical models of situations involving binomials and projectiles
HE4 uses the relationship between functions, inverse functions and their derivatives
HE5 applies the chain rule to problems including those involving velocity and acceleration as functions of displacement
HE6 determines integrals by reduction to a standard form through a given substitution
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form
Harder applications of the Mathematics course are included in this course. Thus the Outcomes from the Mathematics course are included.

Outcomes from the Mathematics course Preliminary course

P2 provides reasoning to support conclusions that are appropriate to the context
P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
P5 understands the concept of a function and the relationship between a function and its graph
P6 relates the derivative of a function to the slope of its graph
P7 determines the derivative of a function through routine application of the rules of differentiation
P8 understands and uses the language and notation of calculus
HSC course
H2 constructs arguments to prove and justify results
H3 manipulates algebraic expressions involving logarithmic and exponential functions
H4 expresses practical problems in mathematical terms based on simple given models
H5 applies appropriate techniques from the study of calculus, geometry, trigonometry and series to solve problems
H6 uses the derivative to determine the features of the graph of a function
H7 uses the features of a graph to deduce information about the derivative
H8 uses techniques of integration to calculate areas and volumes
H9 communicates using mathematical language, notation, diagrams and graphs
(a) The point $P(1,2)$ divides the interval $A B$ in the ratio $k: 1$. If A is the point $(-3,6)$ and B is the point $(7,-4)$, find the value of k.
(b) Find $\frac{d}{d x}\left(x \tan ^{-1} x\right)$
(c)

Not to scale
$Z T$ is a tangent to a circle. $X Y T$ is a secant intersecting the circle at X and Y.
Given that $Z T=4 \mathrm{~cm}$ and $X Y=6 \mathrm{~cm}$, find the length of $Y T$.
(d) Evaluate $\int_{1}^{\sqrt{2}} \frac{d x}{\sqrt{4-x^{2}}}$
(e) Use the substitution $u=x+2$ to evaluate $\int_{-2}^{2} x \sqrt{x+2} d x$
(a) (i) Show that $\frac{1+\cos 2 A}{\sin 2 A}=\cot A$
(b) The diagram below shows the graph of $y=\cos \frac{1}{2} x$ for $0 \leq x \leq \pi$.

The shaded area is rotated about the x-axis. Find the volume of the solid formed.
(c) (i) Show by means of a sketch, that the curves $y=x^{2}$ and $y=-\frac{1}{2} \ln x$ meet at a single point.
(ii) By taking 0.5 as a first approximation to the root of $x^{2}+\frac{1}{2} \ln x=0$, use Newton's method once to find a better approximation of where the two curves meet. Give your answer correct to 2 decimal places.
(a) Consider the polynomial $P(x)=x^{3}-3 x^{2}-4 x+12$.
(i) Show that $(x+2)$ is a factor of $P(x)$.
(ii) Hence, or otherwise, express $P(x)$ as a product of three linear factors.
(iii) Solve $P(x) \leq 0$.
(b) Find the coefficient of x^{3} in the expansion of $(2+x)(1-x)^{5}$
(c) (i) Find the maximum value of $2 x(1-x)$.
(ii) Hence, or otherwise, find the range of the function given by

$$
\begin{equation*}
f(x)=\sin ^{-1}\{2 x(1-x)\} \text { in the interval } 0 \leq x \leq 1 . \tag{2}
\end{equation*}
$$

(a) Solve the cubic equation $x^{3}-6 x^{2}+10 x-4=0$ given that the roots form an arithmetic series.
(b) The velocity v at a position x of a particle moving in a straight line, is given $v=a+b e^{-k x}$ where a, b and k are constants.
(i) Find b if $v=2 a$ at the origin.
(ii) Show that the particle never changes its direction of motion.
(c) (i) Show that $4\left(1^{3}+2^{3}+3^{3}+\ldots+n^{3}\right)=n^{2}(n+1)^{2}$ for all integers $n \geq 1$, using the principle of mathematical induction.
(ii) Hence evaluate $\lim _{n \rightarrow \infty}\left\{\frac{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}{n^{4}}\right\}$
(a) Evaluate $\tan \left\{\cos ^{-1}\left(\frac{-1}{3}\right)\right\}$.
(b) In the circle below, $A B=A C$. Let $\angle P A B=\alpha$ and $\angle A B C=\beta$.

Not to Scale

(i) Copy the diagram onto your answer booklet and state why $\angle A X C=\alpha+\beta$
(ii) Give a reason why $\angle P Q B=\alpha$.
(iii) Prove $\angle A Q B=\beta$.
(iv) Prove $X Y Q P$ is a cyclic quadrilateral.
(c) A particle P moves in a straight line so that its distance from O after t secs is x metres. The acceleration of P from O is given by the equation $\frac{d^{2} x}{d t^{2}}=10 x-2 x^{3}$. The particle is at rest 1 metre to the right of O.
(i) Find v^{2} in terms of x, where v is the velocity of the particle.
(ii) Hence find all positions where the particle is at rest.

Question 6 (12 marks) Start a new booklet.

(a) (i) Show that the line $x=k(y-1)+\frac{2}{k}$ is a tangent to the parabola $(y-1)=\frac{x^{2}}{8}$ for all values of $k,(k \neq 0)$.
(ii) Hence, or otherwise, find the acute angle between the tangents drawn to this parabola from the point $(5,4)$.
(b)

The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the chord $P Q$ is $y=\frac{p+q}{2} x-a p q$.
(ii) Show that if the chord $P Q$ passes through the focus $S(0, a)$ then $p q=-1$.
(iii) $\quad M$ is the midpoint of the focal chord $P Q . N$ lies on the directrix such that $M N$ is perpendicular to the directrix. T is the midpoint of $M N$.
Show that the coordinates of T are $\left(a(p+q), \frac{a\left(p^{2}+q^{2}-2\right)}{4}\right)$.
(iv) Find the equation of the locus of T.
(a) An arrow is thrown from the ground with initial velocity $40 \mathrm{~ms}^{-1}$ at an angle of 60° to the horizontal. The position of the arrow at time t seconds is given by the parametric equations:

$$
\begin{aligned}
& x=20 t \\
& y=20 \sqrt{3} t-5 t^{2}
\end{aligned}
$$

where $10 \mathrm{~ms}^{-2}$ is the acceleration due to gravity. (You are NOT required to derive these)

(i) Show that the Cartesian equation of the path of the arrow is given by $y=\sqrt{3} x-\frac{x^{2}}{80}$.
(ii) The arrow is thrown above a hill with a gradient of $\frac{1}{4}$. Show that the horizontal distance travelled by the projectile when it lands on the hill (the x-coordinate of A) is $(80 \sqrt{3}-20)$ metres.
(iii) Hence find the distance $O A$ up the hill the from the point of projection of the arrow to the point of landing. Give your answer to the nearest metre.
(iv) Find the speed of the arrow when it lands on the hill at the point A. Give your answer to the nearest $m s^{-1}$.
(b) Consider the binomial expansion $(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}$ where n is an even number.

Prove that $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots+\binom{n}{n-1}=2^{n-1}$

