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MATHEMATICS  SYLLABUS

{{ UNIT COURSE

The Board recognises that the aims and objectives of the syllabus may
be achieved in a variety of ways and by the application of many different
techniques. Success in the achievement of these aims and objectives 1is
the concern of the Board which does not, however, either stipulate or
evaluate specific tcaching methods. :

INTRODUCTION

The Mathematics 4 Unit Course 1is defined in the same terms as the
3 Unit Course in other subjects. Thus it offers a suitable preparation for
study of the subje-t at tertlary level, as well as a deeper and moye
extensive treatment of certain topics than is offered in other Mathematics
Courses.

This syllabus is designed for students with a special interest 1in
mathematics who have shown that they possess special aptitude for the
subject. It represents a distinctly high level in school mathematics
involving the development of considerable manipulative skill and a high
degree of understanding of the fundamental ideas of algebra and calculus.
These topics are treated in some depth. Thus the course provides a
sufficient basis for a wide range of useful applications of mathematics
as well as an adequate foundation for the further study of the subject.

AIMS AND OBJECTIVES

The general aim 1s to present mathematics as a living art which 1is
intellectually exciting, aesthetically satisfying, and relevant to a great
variety of practical situations.

Specific aims of the course are:

(a) To offer a programme which will be of interest and value to
pupils with the highest levels of mathematical ability at the
stage of the Higher School Certificate and which will present
some challenge to such pupils.

(b) To study uscful and important mathematical ideas and technigues
appropriate to these levels of ability.

(c) To develop both an understanding of these ideas and techniques
and an ability to apply them to the study and solution of a
wide variety of problems,

(d) To provide the mathematical background necessary for further
studics (n sathematics, and useful for concurrent study of
subjects such as sci€ice, cconomics and industrial arts.
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SYLLARUS

PART |

IA. THE MATHEMATICS 3 UNIT COURSE:

The whole of the syllabus for the 3 unit course is included in the
4 Unit course.

IB. ADDITIONAL EXAMPLES 1IN GEOMIT'RIC APPLTICATIONS O DII'FERENTIATION

Extensior of the ideas ang techniques of the 3 Unit topic on
Geometrical Apj ilcations of Differentiation to rational functions,
logarithmic ang eéxponential functions, the circular functions, ang simple
combinations of such functions.

PART 11

1 COMPLEX NUMBERS

(a) Origir of the idea of a complex number ", connection with the
existence of solutions of quadratic €equations. Exploration of
the consequences of introducing a symbol Satisfying j? = L
Argand diagram, modulus, argument, conjugate, Geometric
representation of addition and multiplication of complex numbers .
The relations

o
lz)+2,] ¢ lzai + |2z, |z, , = . /
- - — S—
Zr*tza=z,42,, 2, . Z20=zh iz a8
arglzyzz) = 4rg 1 % ours z; (mea 2-)
(b) The identity cos ns + ; $in nfi = (cos 2 + 3 sin <)%, where n

is an integer. The roots of =l
(c) Sguare Foots of complex numbers,

(d) Curves ang regions in the complex plane determined by simple
arithmetic operations on complex numbers.

2 ALGEBRA

(@) iclunomiqrg 18 Sune g
Pgtynqmials with real CUefficients, polynomial €quations,
Division nf one pclvnomial by another, Pactors ang roots, the

Itralnder and factor theorcms, Relations betwecn the degree
and the numbe) oF roots,

Statﬁmcnp (without Froct) of the fundamenta) thecrem of algebra.
“~€ 2 give the Standard factorisations of a real Polynomial

over the “eplex ficlg und the ren) field,

HNTrU] e it.ions betwcen roots andg coeff1c1ents.



(b) Partial fractions
Practical methods for finding partial fractions for rational

functions whose denominators have simple linear or quadratic
factors. (This is to be applied to examples in integration.)

e FURTHER CALCULUS

(a) (1) Calculation of the derivative for simple implicit functions,
and its use in sketching curves.

(ii) The conic sections:- defining equations, curve sketching,

and identification of foci and directrix. Parametrizations
of the circle, the ellipse, the parabola and the hyperbola.

(b) Integration:
(1) Use of change of variable.
(i1) Integr;tion by parts.
(1ii) Simple rational functions.

(iv) Applications of the above techniques.

(c) Computing of areas and volumes - some examples by the "slice"
technique.

4. ELEMENTARY PARTICLE DYNAMICS

(a) Kinematics and dynamics of a particle in one and two dimensions.

(b) Motion in a circle.

(c) Free motion in a resistive medium under gravity.



R
NOTES 10 THE SYLLARUS

PART 1

A. The Notes o. the 3 Unit Coursc apply unless they restrict the range
of a topic treated elsewhere in this Syllabus. It is emphasised that the
3 Unit Course is an integral part of the 4 Unit Course. The 4 Unit Coursec
1s to give students experience with harder problems based on the 3 Unit
Course, and it is anticipated that such problems would be included i+ any
4 Unit Course examination. .

CL . X X
B. Examples of additional types of functionus to be covered are iT%, 1537
’ < ’
~ = sin x .
xe™X, e~X? x log x, =< X sec x, x + sin x.

Here, as in the treatment of this topic in the 3 Unit Course, emphasis
is to be placed on the relation between the geometrical representation of
a function and properties of the function. For example, from the formula

£(x) = Tf§7 (x € RR)

the facts that f(x) is odd and has the same sign as x, behaves like g(x) = x
for x near 0 and like h(x) -= % for |x| large, has (at least) a maximum in

x > 0 and hence (at least) an inflexion in x > 0, should be observed before
f' or f" are calculated. The geometrical significance of each of these
observations should be understood.

Similarly, simple properties of a derivative should be observed and
used to deduce facts about its (possibly unknown) primitive function. For
example, 1if

£'(x) = eX(x? - 2x - 3) ,
and f(x) tends to 0 as x tends to -«, then f is increasing (and hence
positive) until it obtains a maximum at x = -1, it decreases to a minimum
at x = 3, then increases and tends to += as x tends to +«.
These ideas require understanding and use of the sign of a function

and its derivatives, use of all the rulcs for differentiation, and an
understanding of asymptotes.

PART 11

1. COMPLEX NUMBERS

(a) hie 1ntention is to familiarise students with the basic notations
for, arithmetic operations on, and geometric representation of
complex numbers, which are regarded as an extension of the real



numbers bY adjoining a symbol 1, satisfying i? = -1. The
arithmetic of numbers a *t ip is to obey the usual rules. Real
and imaginary parts, modulus, argument and conjugate are defined
and the appropriate notations introduced. Use Re(z) and Im(z)
for real and imaginary parts of z. Argand diagram representation
clarifies the meaning of the arithmetic operations and the new

terms.

(b) The identity for cos ng + i sin nd is proved by induction on n
for n a positive integer, and then extended toO negative 1integers.
The complex nth roots of +]1 are obtained 1in modulus-argument

form, and plotted on the Argand diagram.

(c) Sguare roots of complex numbers are found DY solving the relevant

real equations. (z? = w gives x? - y2 + 2ixy =V + iv, which
gives two eguations for x, Yy in terms of u, V. %n modulus-
: T
argument form the relevant equations are |z{? = \w|, 2arg z = arg wW/)

(d) Typical curves and regions are those defined py simple equations
or inequalities, such as Re(z) = %, |zl = 3 lz - 1| £ 5, Im(z) > 2,
0 < arg 2z < n/2, and extending tO examples such as the foliowing

(@5 (ii) of the 1977 H.S.C. & Unit Second Paper) @

Describe, in geometric terms, the locus (in the Argand plane)
represented by

2|z =z + 2z * 4.

ALGEBRA

It is expected that pupils will be familiar with the commonly used
algebraic properties of integers, rational numbers and real numbers.
A distinction should be drawn petween the integers (in which divis-
ibility properties are important and lead to the ideas of prime,
factor and division with remainder) and +he rational Or real numbers
(where divisibility by any non-zero number is possible). Decimal
representations of real (and rational numbers) should pe discussed
briefly. The words intugral Gor.zir and “ield might be introduced
and related to the various number systems studied. standard
notations for the common number systems are:

for the (ring of) integers 0, +1, t2...41
for the (field of) rational numbers,

for the (field of) real numbers,

for the (field of) complex numbers,

OO

and it 1s sugyested that these sywbols be introduced and used.

(a) Polynomials as functions

A polynomial function of a recal variable, say

n

p(x) = ag+ ax * ... +oa X (ag, +++ ¢ 3p reat numbers)

assigns to cach rcal number b in its domain the number

p(b) = ag+ a;b+ ... * anb“.



If the coeffic:.ents of P arc integers, then P(b) is an integer
for each integer valuc of b, P may also be considered '“w.u as a

function from the set of integers anto the same set. .inctlarly,
if the coefficients of P are rat . »mal numbers, then P defines a
function from the field of ratiounals 1nto the same ‘i1eld. Since

the real field may be considered as a subset of the complex
field, a real polynomial (l1.e., one with real coefficients) also
defines a function from the complex field into itself., The
domain of a polynomial function P 1s important, for it may
determine the numbor of roots P has. For example, if

P(x) = x7 - 2,

then P(x) = 0 has no solutions in the rational field, but two
solutions in the real field. If

P(x) = x? + 2,

then P(x) = 0 has no solutions in the real field, but two
solutions in the complex field.

Addition and multiplication of real polynomial functions are
defined as for all functions of a real variable. The properties
of real numbers, together with the index laws, imply that the
sum or product of two polynomial functions is again a polynomial
function. Because of this, we may apply to polynomial functions
the ideas of divisibility and factorisation.

The division transformation is established, yielding the
polynomial identity

P(x) = A(x)Q(x) + R(x),

where the quotient Q(x) and the remainder R(x) are polynomials,
and deg R < deg A (possibly R is the zero polynomial in which all
coefficients are zero). The use of the ‘identically equals'

sign = means here that the coefficients of the corresponding
powers of x on each side are egual.

When A(x) is of the first degree, say A(x) = x - a, then

P(x) (x-a)Q(x) + r,

0, so that in
valuating this

where either r is the zero polynomial or deg r
either case r is a constant independent of x.
expression for the value x = a,

o

P(a) = r,

a result called the remainder theorem. The case r = 0 gives
the fa-tor theorem: x-a is a factor of P(x) if anrd only if
P(a) = 0.

Repeated application of the factor theorem to P(x) yields a
linear factor (x-a) for each root a of P(x) in the domain of P.
In particular, 1f P(x) has degree n and if P has n distinct
roots ay,...,ap, then

P(x) - clx-ay)...(x-ap)

for some constant c. This means that if b # a for each i, then

P(E) # n, ang ~onsequently a real polynomial function of
aegree n - J - .nnut have more than n distinct real roots. The
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argument uscd no propsrtics of the real numbers other than that
they form a field, and the rosult applies to polynomials over
any field., Earlicr rcrarks on the significance of the domain
for the number of roots apply now to the number of linear
factors.

1t may happen that Fi(x)=(x=a. x: anro that (x-a) 1s a factor
of Q(x) (and hence that x-a 1S a4 root of Q(x)). The numbher a
is then called a repeated or @H}}[;}c root of P(x). I1f

P(x)=(x-a)fs(x),

where r is a positive integer anc S(a)#0, then a :s called a
root of P(x) of order or mu;tiolicigz r, and (x-a) 1s called

a factor of P(x) of order r. A simple root or factor is one
of order 1. By convention, a root of order r is counted as r
(equal) roots (each root is counted "according to its
multiplicity"). With this convention, the argument above
relating roots and factors extends to cases of multiple roots,
and the result is that a real polynomial of degree nz0 cannot
have more than n roots, where each distinct root is counted
according to its multiplicity. 1In the case where P(x) 1is
monic (i.e., the coefficient of the highest power of x is 1)

of degree n>l and has n linear factors x-a,,...,X=dp, We obtain
CP(x) E (x-a))...(x-ap)
= (xP - (Zag)xP™! + (Xaiaj)x“"- R (—l)nal...an.

Comparing coefficients on each side yields the relations
between the roots of P and its coefficients,

From the meaning of =, it is clear that if P and Q are identical
polynomials, then P(x) and Q(x) are the same function: P(x) = Q(x)
for every x. The result above, that a real polynomial function
of degree n cannot have more than n roots, implies that for the
real or complex fields, if P(x) and Q(x) define the same
function, then P(x) = Q(x), i.e., P and Q are identical poly-
nomials. For if not, then P-Q is not the zero pc’ynomial, so
deg(P-Q) = n 2 0. Hence P(x) - Q(x) = 0 for at most n values

of x. Choose a real number b uistinct from these values of x.
Then P(b) - Q(b) # 0, or P(b) # Q(b), showing that P and Q do
not define the same function.

It should now be proved that if two real polynomials of degrees
at most n take the same values at n + 1 distinct points, then
they arc identical.

(It might be pointed out that some of the above results are
false for polynomials over other domains. For example, the
numbers 0, 1, 2, 3, 4 form a field F under the operations of
module 5 arithmetic. The polynomials x and x*, considered as
functions on F into F, are the same function, but x®* Z x. The
numbers 0, 1, 2, 3, 4, 5 form a ring R under the operations of
modulo 6 arithmetic. The polynomial x? + x, of degree 2, has
the 4 roots 0, 2, 3, 5 in R.)

The "fundamental theorem of algebra" asserts that every polynomial
P(x) of degree n > 0 over the complex field has at least one root.
Using this result, the factor theorem should now be used to

prove (by induction on the degree) that a polynomial of degree

n > 0 with real (or complex) coefficients has exactly n complex
roots (each counted according to its multiplicity) and is
expressible as a product of exactly n complex linear factors.



(b)

The relations between roots and coefficients derived above

are therefore valid for every such polynomial, and hence for
polynomials with real coefficients (which nevertheless may have
no real roots). The fact that complex roots of real polynomials
occur in.conjugate pairs leads directly to the factorisation of
real polynomials over the real field as a product of real linear
and real quadratic factors.

The formation of a polynomial whose roots are a given multiple
of the roots of a given polynomial, or whose roots differ from
the roots of a given polynomial by a given constant, should be
known.

Partial fractions

The theory in 2(a) above has led to the result that any real
polynomial is expressible as a product of real linear and real
quadratic factors, the latter factors having no real roots. The
same polynomial, considered over the complex field, is
expressible as a product of (real or complex) linear factors.

These factcrisations may be used to simplify the problem of
integration of rational functions, by means of the so-called
partial fraction decomposition of rational functions. (A formal
development of the theory, based on the Euclidean algorithm for
polynomials, is not required. The intention is for pupils to
become familiar with practical procedures for treating the
simplest cases. The general theory, which proves the existence
and nature of the partial fraction decomposition of any rational
function, or techniques for treating repeated linear or
guadratic factors could both be developed with interested
students (especially if appropriate examples are met in exercises
on integration), but are both excluded from the syllabus.)

By definition, a rational function f(x) is the ratio of two
polynomials:

f(x) = Al(x)/B(x),

defined for all values of x except those for which B(x) = 0.
If deg A > deg B, we divide B into A,

A(x) = B(x)Q(x) + R(x), deg R < deg B,
obtaining
£(x) = Q(x) + R(x)/B(x).
V4
The problem of partial fraction decomposition arises when B(x)
is a product of polynomials of lower degree, say B(x) =
B,(x)B2(x) with deg B, > 0, deg B, > 0. Can we find polynomials

m-(x), my(x) such that

Ri{x)} _ m, (x) m; {x)
This will be so if
R(xX) * m(x)B(x) + m,(x)B,(x) ,

and comparison of degrees shows that we may suppose deg m, deg B,,
deg m, < deg B;. Rather than discuss the general theory, we



confine attcntion to the fol .owing useful cases.

(1) B(x) 1s a product of Aistinct linear factors:
B(x' - c(x-a,)...(x=an).
In this case, we wish to discover if constants ¢;,..-:Cn exist
so that )
B(x) X-a, e X-an
Consider the case when n = 2. Then R(x) = cX +.d4, and on

multiplying by B(x), we seek c,, €. so that
cx + d c.(x-az) + cz(x-ai).
Comparing coefficients,
c =c¢c, +C.
d = -a;c; - a Cc.

Since a, # a:, these eguations may be solved for c, and Ci.

In the general case, the fact that a,....,an are distinct
enables the coefficient equations to be solved for ¢y,...,Cn-
Other methods may be used to find ¢,,...,Cp, which are often
quicker to use. For example, 1if we multiply the expression
for R(x)/B(x) by x-a,, and note that Bfa,) = 0, the result may
be written
. X=-a) = _ C. + _C
R(x) B(T—X _Bra—l’) c, t (x-a,) x_——-a. L ooc X:Lan

Let x tend to a,. The right-hand side tends to c,, the left-
hand side tends to R(a,)/B'(a;). Thus

c1 = R{a,;)/B'(a))
and the method enables all the cy to be found.

(ii) B(x) is a product of distinct linear factors and a simple
guadratic factor. Here the decomposition is of the form

o)

Ci_ 4+ ... + Cn __dx+te
X-a x-a, Xx2+bx+cC

, deg R < n + 2,

oo}

(x)
(x)

and again the numbers Ci,...:Cny d, e may be found by comparing
coefficients, or by combining that method with others. For
example, ¢,,...,Cp may be found by the method described
immediately above. If none of ay,...,an is 0, putting x = 0

gives e. Multiplying by X and letting x tend to infinity

gives d. If say ar = 0, first find 4, and then e may be found

by selecting a small integer value for x, distinct from a;,....@n:
to give a simple equation for e.

e FURTHER CALCULUS

(a) (i) The discussion is to be confined to examples such as simple
polynomials in x and y where y is given implicitly as a
function of x, or vice-versa.
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(ii) Cartesian equations in standard form (?7 b3 %7 = 1) are

taken as the defining equations for ellipse and hyperbola,
whose curves should be sketched, and their variations
examined as the ratio @ varies. The parametric representations

b
X =acos 8 , y=>b sin © (ellipse)
X =asec 8 , y=D>b tan 8§ (hyperbola)
x = at , Y = a/t (rectangular hyperbola)

are useful in graphing these curves in order to obtain
their shapes.

The intention is to acquaint candidates with the basic
shapes of these curves, their common eguations, the
focus-directrix properties, and the eguations of tangents
and normals in cartesian and parametric forms. The focus-
directrix properties relate them to the parabola. The
fact that these curves are sections of a cone might be
discussed, but there is no need to attempt to derive their
equations from this description.

Locus problems involving tangents, normals or chords are
restricted to the circle, parabola and rectangular
hyperbola.

(b) The intention here is to provide further practice in the
evaluation of simple integrals, and to introduce the useful
techniques of substitution and integration by parts. (The
relationships of these to the corresponding differentiation
rules should be pointed out, but no formal justification is
required. The basic rules should be stated carefully.)

(1) The substitutions to be treated are simple, e.g. x = sin 8,

v = x?, t = tan %, and applied to simple integrands (e.g.

J/(1-x?)dx, [ x(1+x?)DPdx, j%’-}% d8). The effect on

limits of integration is required, and definite integrals
are to be treated.

(ii) The work on integration by parts should include the inter-

grands sin -lx, e3¥ cos bx, log x, xn log x (n an integer)
and should be extended to particular examples of recurrence

relations (e.g. [ xPeXdx, !g/z cos™x dx). (Recurrence
relations "such as f; xM(1-x)Ndx, which involve more than one
integer parameter, are excluded.)

(iii) The rational functions treated should not require partial

fraction decompositions more complicated than Lhose
discussed in 2(b) above.



(c)
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(sv) The above techrniques may be required in the soLucion of

problems on other topics 11 the syllabus

This 1s intended to proviuce further practice in the finding of
definite integrals where the process of "iimiting sum®™ has an
intuitive geometrical representation, which should be presented
in each example.

The evaluation of infinite series by this tgchnique is excluded,
as is the evaluation of integrals by summation of series.
Typical problems to be considered are:

(2) volumes of cones on bages whose areas are known or can be
calculated (so that areas of "slices" can be found by
similarity).

Example: Find the volume of a pyramid of height h on a

square base of sice length a.

Let 0 be the vertex of the pyramid,
and let N be the point where the
perpendicular, from 0 to the base
ABCD, meets the base, SO ON = h.
Let P on ON be distant X from 9.

The plane through P, parallel to
the base, meets OA, OB, OC, oD
respectively at A', B', C', D'.
By similar triangles,

oa' _OB' _OC' _OD _ X
OA OB oC oD h '
hence
-A—'——B-' = §—'-E' = _x_
. AB BC h °

Thus the area of the square A'B'C'D' is
xz xz - o N
A'B'.B'C' = EYAB.BC = H;a‘. Hence a thin slice of
2.2
thickness dx on the base A'B'C'D' has volume Eg?—dx.

The volume of the pyramid is therefore
2

... _ a hz__l‘_’

dx = g~ IO x‘dx = 3a h.

(
p

~
h .\'32
0 n?

(#, The volume of a solid of revolution by using cylindrical
"slices".

Example: The continuous function f(x) satisfies

f(a) = £(b) = 0, where 0 < a < b, and is positive for

a < x < b. The area between Y = f(x) and the x-axis,
for a < x < b, is rotated apout the y axis. Prove that
the volume of the solid thus obtained is
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g a
g f(x)
b
2m [ Xy dx . 1//”’5—\\X4
a “ola x 5>
iz -
v

Consider a thin cylindrical slice whose
base is the annulus of radii x and x + dx,
of height y = f(x).

Volume of slice = area of base «x height
= 27xdx x Y.

Hence Volume of solid = Jb 2nxydx.
a

ELEMENTARY PARTICLE DYNAMICS

Students should be able to represent mathematically motions
described in physical terms, and should be able to explain in
physical terms features given by mathematical descriptions of
motions in one or two 4i1mensions. Emphasis should be placed upon
making physical interpretations of mathematical concepts such as
range, domain, and Stationary or extreme values of functions,
rather than upon intricate formal manipulations.,

(a)

(b)

(c)

The classical statement of Newton's First and Second laws of
motion should be given as an illustration of the application
of mathematics to the physical world. Resolution of forces,
accelerations and velocities in horizontal and vertical
directions is to be used to obtain the appropriate equations
of motion in two dimensions.

The notions of angular velocity and centripetal force should
be understood.

Discussion of resisted motion should be restricted to simple
examples that can be solved explicitly, including the case
of a particle moving vertically under gravity and subject to
a resistance proportional to a power of the speed.

D. West, Government Printer, New South Wales -



