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Linear in parameters models (including only first order models in p-1 independent
variables with p parameters) can be generalized as –

0 1 1 2 2 3 3 1 1... p pY Z Z Z Zβ β β β β ε− −= + + + + + +
where the Zi can represent any functions of the basic predictor variables X1, X2,
X3,…, Xk. While the above equation can represent a wide variety of relationships,
there are many situations in which a model of this form is not appropriate; for
example, when definite information is available about the form of the relationship
between the response and the predictor variables. Such information might
occasionally involve direct knowledge of the actual form of the true model or might
be represented by a set of differential equations that the model must satisfy.
Sometimes the information leads to several alternative models, may be of a non-linear
form and we would usually prefer such a model whenever possible, rather than to fit
an alternative, perhaps less realistic linear modelI.

A regression model is called nonlinear, if the derivatives of the model with
respect to the model parameters depends on one or more parameters. This definition is
essential to distinguish nonlinear from curvilinear regression. A regression model is
not necessarily nonlinear if the graphed regression trend is curved. A polynomial
model appears curved when y is plotted against x. It is, however, not a nonlinear
model.

Fitting a nonlinear regression model to data is slightly more involved than
fitting a linear model, but they have specific advantages:
- Nonlinear models are often derived on the basis of physical and/or biological

considerations, e.g., from differential equations, and have justification within a
quantitative conceptualization of the process of interest.

- The parameters of a nonlinear model usually have direct interpretation in terms of
the process under study.

- Constraints can be built into a nonlinear model easily and are harder to enforce for
linear models.

Intrinsically Linear and Intrinsically Non-linear Regression Models
Any model not of the above given form will be called a non-linear model, that

is non-linear in parameters. Non-linear regression models can be classified into two
groups according to whether they can or cannot be made linear with respect to the
parameters to be estimated.
1. Intrinsically Linear Models: A non-linear model with respect to the variables

but linear with respect to the parameters to be estimated. Suitable transformations
of data can frequently (not always) be found that will reduce a theoretical non-
linear model to a linear form. These transformations are said to be “LinearizableII”
and comprise a class of functions that may exist either occur in practice or may
themselves provide reasonable approximations to functions that occur in practice.
Linearizing may require transforming both the independent and dependent
variable. For instance, 1 2( )tY e θ θ ε+ +=  which can be transformed in a model which is

                                                       
I Although this is true that Linear regression models can provide a large and rich framework that suits
the needs of many analysis, and the usefulness of linear models is more general than apparent, but
linear regression cannot be adequate for all problems theoretically or empirically, since sometimes the
response and the predictors are related through a known non-linear function.
II This term is used by Chatterjee, Price (1991) “Regression analysis by Example”, 2nd ed., ch – 2 and
Weisberg (1980) “Applied linear regression”, ch – 6.
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linear in parameter just by taking logarithms to the base e – and we shall call the
model Intrinsically Linear – that is, an intrinsically linear model is one that can be
made linear by a transformation of parameters. The basic common characteristic
of such models is that they can be converted into ordinary linear models by
suitable transformation of variables – and such transformation amounts to nothing
more than re-labeling one or more of the variables. While it may be useful, at
times, to transform a model of this type so that it can be easily fitted, it will
remain a non-linear model, whatever the transformation applied. However, the
least squares estimates of the parameters will not in general be equivalent to the
non-linear parameter estimates in the original model in this case. The reason is
that – in the original non-linear model least squares implies minimization of the
sum of squared residuals on y, whereas in the transformed model, we are
minimizing the sum of squared residual on “transformed response” (that is, ln y in
our present case). Also, the issue often resolves around the error structureIII (such
as – so the standard assumptions on the errors apply to the original non-linear
model or to the linearized one?) is sometimes not an easy question to answer.

2. Intrinsically Non-linear Models: Not all functions are linearizable, nor in some
cases it is desirable to transform to linearity. For example,

2 11

1 2

[ ]t tY e eθ θθ
ε

θ θ
− −= − +

−
 however, is impossible to convert into a form – linear

in parameters, which we will call Intrinsically NonlinearIV.

                                                       
III When an intrinsically linear model has been transformed into the linear model form, it is important to
study the linearized model for aptness – since the normally distributed error term may not be normally
distributed anymore when transformed.
IV Nonlinear least squares and maximum log-likelihood are the most common methods for parameter
estimation of nonlinear models in econometrics. For some more examples related to Economics,
readers may consult Gujarati (2003) “Basic Econometrics” 4th ed., page – 564-5, Koutsoyiannis (1977)
“Theory of Economertics – An introduction exposition of Economic Methods”, 2nd ed., page – 134-8,
Jan Kmenta (1986) “Elements of Econometrics”, 2nd ed., page – 503-26 for these two classifications.
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Least Squares in the Non-linear Case

Notations: The standard notation for non-linear Least SquaresV situations is a bit
different from that of linear Least Squares cases. Suppose the postulated model is of
the form –

1 2 1 2( , ,..., ; , ,..., )k pY f ξ ξ ξ θ θ θ ε= +
where the θ ’s are the parameters, and ξ ’s are the predictor variables and the ε  term
follows usual assumptions regarding error terms as we know from linear regression –
such as E(ε ) = 0 and V(ε ) = 2σ , where 2(0, )Nε σ∼  i.i.d and are uncorrelated..

If we write –

1

2

1

...

k k

ξ
ξ

ξ

ξ
×

 
 
 =
 
 
 

 and 

1

2

1

...

p p

θ
θ

θ

θ
×

 
 
 =  
  
 

We denote the number of independent ξ  variables by k, since the number of ξ
variables in non-linear regression is not directly related to the number of parameters,
unlike linear regressionVI.
Thus, the above model can be shorten to –

( , )

( ) ( , )

Y f

E Y f

ξ θ ε
ξ θ

= +
⇒ =

Now, let us extend the model for n observations as –

1 2 1 2( , ,..., ; , ,..., )u u ku p uY f ξ ξ ξ θ θ θ ε= + , for u =(1,2,…,n)

( , )u u uY f ξ θ ε⇒ = +

where, 

1

2 2(0, )
...

n

N I

ε
ε

ε σ

ε

 
 
 =
 
 
 

∼

Procedure: We define the Error Sum of SquaresVII for the non-linear model as –

2

1

( ) [ ( , )]
n

u u
u

S Y fθ ξ θ
=

= −∑
We shall denote by θ̂ VIII, a least squares estimate of θ , that is a value of θ  which

minimizes S(θ ). To find the least squares estimate θ̂ , we need to differentiate the
Error Sum of Squares with respect to θ  –

                                                       
V Ordinary Least squares applied to a non-linear regression model is called non-linear Least Squares.
VI Readers may consult Neter, Wasserman, Kutner (1983) “Applied Linear Regression Models”, page –
470-1 for this matter.
VII Since ,u uY ξ  are fixed observations, the sum of squares is a function of θ  only.

VIII It turns out that θ̂  is also a Maximum Likelihood estimate of θ  in this case.
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1

( , )( )
( 2){ ( , )}

n
u

u u
ui i

fS
Y f

ξ θθ
ξ θ

θ θ=

 ∂∂ = − −  ∂ ∂ 
∑

When the p partial derivatives are set equal to zero, and the parameters iθ  are

replaced by θ̂ , and after simplification, we obtain the p normal equations. The normal
equations take the form –

1 ˆ

( , )
{ ( , )} 0

n
u

u u
u i

f
Y f

θ θ

ξ θ
ξ θ

θ= =

 ∂
− = ∂ 

∑ , for i = (1,2,…,p)

where the quantity in the brackets is the derivative of ( , )uf ξ θ  with respect to iθ  with

all θ ’s replaced by the corresponding θ̂ ’s, which have the same subscript. When the
function ( , )uf ξ θ  was linear, this quantity was a function of uξ  only and did not

involve the θ̂ ’s at all. When the model is non-linear in the θ ’s, so will be the normal
equations.

Problem: However, in non-linear case, the solving the normal equations is not easy
(the development of the least squares estimators for a non-linear model brings about
complications not encountered in the case of the linear model) – and in most cases, it
is extremely difficult to obtain – and iterative methods must be employed in nearly all
cases. To compound the difficulties, it may happen that multiple solutions exist,

corresponding to multiple stationary values of the function ˆ( )S θ . The statistical
literature is quite rich in algorithms for minimization of the residual sum of squares in
non-linear situations. Next, we will, therefore, discuss methods that have been used to
estimate the parameters in non-linear systems.

Approaches to Estimation Non-linear Regression Models: In some non-linear
problem, it is most convenient to write down the normal equations and develop a
direct (method 1 below) iterative technique for solving them. Whether this works
satisfactorily or not – depends on the form of the equations and the iterative method
used. There are some of the alternative approaches –

1. Direct search (Trial-and-Error or Derivative-free techniqueIX)
2. Linearization (iterative method or Gauss-Newton Method)
3. Steepest descentX (Direct Optimization)
4. Marquardt’s compromiseXI

                                                       
IX This method is not generally used since it takes huge time and effort and; at the end of the day we
may find some estimated parameter values with poor properties!
X This method proceeds very systematically (and thus sometimes very slowly) starting with some initial
values. This method is particularly effective when the starting values are not good and far from the
final values. While, theoretically, the steepest descent method will converge, it may do so in practice
with agonizing slowness after some rapid initial progress. A further disadvantage of the steepest
descent method is that it is not scale invariant. The indicated direction of movement changes if the
scales of the variables are changed, unless all are changed by the same factor. The steepest descent
method is, on the whole, slightly less favored than the linearization method (described later) but will
work satisfactorily for many nonlinear problems, especially if modifications are made to the basic
technique.
XI The method developed by D. W. Marquardt (“An algorithm for least squares estimation of nonlinear
parameters”, Journal of the Society for Industrial and Applied Mathematics, 2, 1963, 431-441) appears
to enlarge considerably the number of practical problems that can be tackled by nonlinear estimation.
This method is a compromise between the 2nd and 3rd method mentioned here, and occupies a middle
ground between these two methods.
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5. In addition to these approach, there are several currently employed
methods available for obtaining the parameter estimates by Statistical
Computer Packages

However, we will mention only the 2nd one in our present documentation.

Linearization Method: The LinearizationXII (followed by Gauss-Newton iteration
based on Taylor SeriesXIII) method uses the result of linear least squares in a
succession of stages. Suppose the postulated model is of form:

( , )u u uY f ξ θ ε= +

Let 10 20 0, ,..., pθ θ θ  be initial valuesXIV for the parameters 1 2, ,..., pθ θ θ . These

initial valuesXV may be guesses or preliminary estimates based on whatever
information is available. These initial values will, hopefully, be improved upon in the
successive iterations to be described below. If we carry out a Taylor series expansion
of ( , )uf ξ θ  about the point 0θ , where 0θ  = 10 20 0( , ,..., )pθ θ θ ′  and curtail the expansion

at the first derivatives, we can say that, approximately, when θ  is close to 0θ ,

                                                       
XII Linearization is accomplished by a Taylor series expansion of f( ,uξ θ ) about the point (or initial

starting vector values) with only the linear terms retained (ignoring all the higher order terms other than
the first order term).
XIII Any function (continuous and has a continuous p-th derivative) can be written as  f(x)=

2 3
( )

1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ... ( )

2! 3! !

p
p

p

x a x a x a
f a x a f a f a f a f a R

p +

− − −′ ′′ ′′′+ − + + + + +

expanded by Taylor series where ( ) ( ) /f a df x dx′ =  around x = a, and 1pR +  is the remainder term –

which is reasonably small if p is sufficiently large. Also, the function f(x) must converge at the point a.
If we omit the 2nd and higher order terms, then the equation is linear in “a” and we can apply a natural
mechanism to estimate the coefficients in the linearized version of f(x).
XIV We also call them “Starting Values”. Sometimes, these are pure guesses, sometimes based on prior
experience or prior empirical work or obtained by just fitting a linear regression model even though it
may not be appropriate. All available prior information should be used to make these starting values as
reliable as they possibly can be.

However, the choice of initial starting values is very important in this method because a poor
choice may result in slow convergence. Good starting values will generally result in faster
convergence, and if multiple maxima exist, will lead to a solution that is the global minimum rather
than a local minimum. If there are several local minima in addition to an absolute minimum, poor
starting values may result in convergence to an unwanted stationary point of the sum of squares
surface. Also, it is often desirable to try other set of starting values after a solution has been obtained to
make sure that the same solution will be found.

Readers may consult Myers (1986) “Classical and Modern Regression with Applications”,
page 316-7, Draper, Smith (1998) “Applied Regression Analysis”, Third ed., Page 517-8;
Montgomery, Peck (1992) “Introduction to Linear Regression Analysis”, 2nd ed., Page – 431-2 for
leaning how they suggest to get such initial values.

‘Grid points’ in the parameter space is often useful. Some Statistical packages for non-linear
requires that the users specify the starting values for the regression parameter, and others do a grid
search to obtain starting values.
XV For example, they may be values suggested by the information gained in fitting a similar equation in
a different laboratory or suggested as “about right” by the experimenter based on his/her experience
and knowledge.)
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=
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 

 ∂ + −  ∂  
  ∂ + −  ∂  
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∂    
This above equation represents what is essentially a linearization of the non-linear
form of the function ( , )uf ξ θ  - and the equation may be viewed as a linear

approximation in a neighborhood of the starting values..

Now, we set –

0

0
0

0
0

0

( , ),

( ),

( , )

u u

i i i

u
iu

i

f f

f
Z

θ θ

ξ θ

β θ θ

ξ θ
θ

=

=

= −

 ∂
=  ∂ 

and get the new form –

0 0 0 0 0 0 0 0 0 0
1 1 2 2

1

0 0 0

1

...
p

u u u u p pu u u i iu u
i

p

u u i iu u
i

Y f Z Z Z f Z

Y f Z

β β β ε β ε

β ε

=

=

= + + + + + = + +

⇒ − = +

∑

∑
which is very similar to the linear regression model and the procedure essentially
involves a linear regression analysis on the above model.

If we write –
0 0 0
11 21 1
0 0 0
12 22 20

0

0 0 0
1 2 ( )

...

...

... ... ...

...

p

p
iu

n n pn n p

Z Z Z

Z Z Z
Z Z

Z Z Z
×

 
 
 = =  
 
  

, for (i,u) = [(1,2,…,p), (1,2,…,n)]

00
11

0 0
2 2

0 0

0 0

1

ˆ

ˆ
ˆ

... ...

ˆp p p

b

b
b

b

β

β
β

β
×

  
  
  = = =   
  
     

 and 

0
1 1

0
0 2 2

0

0

1

...

n n n

Y f

Y f
y Y f

Y f
×

 −
 − = − =
 
 

−  

then the reformed model is –

0 0 0 0 0
ˆy Z Z bβ ε ε= + = +
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and the estimateXVI of 0β  , 0b  is given by –
1 0

0 0 0 0( ) ( )b Z Z Z Y f−′ ′= − = a p× 1 vector

Thus, the vector 0b  will be minimizing the Sum of Squares –
2

0 0
0

1 1

( ) ( , )
pn

u u i iu
u i

SS Y f Zθ ξ θ β
= =

 
= − − 

 
∑ ∑

with respect to the 0
iβ , where 0

0
ˆ

i i iβ θ θ= − . Note that the above equation is the

approximating linear expansion of our model.

At this point, we can examine whether the revised regression coefficients
represent adjustments in the proper direction by checking come criterion measure. If
the method is working effectively, then SSE(1) should be smaller than SSE(0) since the
revised regression coefficients should be better estimatesXVII.

Of course, the analyst cannot work with the approximated linear model

directly in a one step operation (need to be iterated). Let us write 0
1 0

ˆ
i i ib θ θ= − , then

the 1iθ ; i = 1,2,…,p can be thought as the revised best estimate of θ . Now, we can

replace the values 1iθ , the revised estimates, in the same roles as were played above

by the values 0iθ  and go exactly the same procedure described above, by replacing all

zero subscripts by ones. This will lead to another set of revised estimates 2iθ , and so

on.
In vector form, we can write about the things of j-th iteration as–

1

1
1

ˆ ˆ

ˆ ˆ ( ) ( )

j j j

j
j j j j j

b

Z Z Z Y f

θ θ

θ θ

+

−
+

= +

′ ′⇒ = + −

where, j
j iu n p

Z Z
×

= , 

1

2

...

j

j
j

j
n

f

f
f

f

 
 
 =  
   

, and 

1

2

...

j

j

j

pj

θ
θ

θ

θ

 
 
 =  
   

                                                       
XVI Any analyst who embarks on a non-linear estimation exercise should be made aware of what is
known (or unknown) about the properties of the estimators. In the non-linear case, we cannot make any
general statements about the properties of the estimators except for large sample – since only
approximate procedures for statistical tests and confidence intervals are available. The estimators are
not unbiased in general, but they are unbiased and minimum variance estimators in the limit, that is, as
the sample grows large. Therefore, non-linear estimates do not possess optimal properties in finite
samples – thus, the results found from small samples must be interpreted carefully. There are
asymptotic variance-covariance results that we can use to obtain approximate confidence intervals and
to construct t-statistics on the parameters. For the asymptotic covariance martix formula, readers may
consult Montgomery, Peck (1992) “Introduction to Linear Regression Analysis”, 2nd ed., Page - 427.
XVII For details, readers may consult Neter, Wasserman, Kutner (1983) “Applied Linear Regression
Models”, page 474-9, and Myers (1986) “Classical and Modern Regression with Applications”, page
305-12.
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In general, the exact iteration process is as follows:

1. Estimate β ’s in the model by linear least squares. We shall denote these first
iteration estimates by b’s.

2. Compute 1 0
ˆ ˆ
i i ibθ θ= +  (i = 1,2,…,p) but this is not our final estimates.

3. The 1îθ  value is treated as the initial value in our first approximated linear model.

4. We return to the first step and again compute b’s (at each iteration, new b’s
represent ‘increments’ that are added to the estimates from the previous iteration

according to 2nd step) and eventually find 2îθ .

5. We continue the process until convergenceXVIII is reached.

Stopping Rule: This iteration process is continued until the solution converges, that
is, until in successive iterations j,(j+1),

( 1){ }i j ij

ij

θ θ
δ

θ
+ −

< , i = (1,2,…,p)

where δ  is some predetermined small amount (e.g., 0.000001 or 1.0 610−× ). At each
stage of the iteration procedure, S( iθ ) can be evaluated to see if a reduction in its

value has actually been achieved.

Limitations:
The user may experience some difficulties with the Linearization procedure, such as –
1. It may converge very slowly, that is, a very large number of iteration may be

required before the solution stabilizes even though the sum of squares S( iθ ) may

decrease consistently as j increases. This sort of behavior is not common but
occurs.

2. It may oscillate widely, continually reversing direction, and often increasing, as
well as decreasing the sum of squares. Nevertheless, the solution may stabilize
eventually.

3. It may not converge at all, and even diverge (move at the wrong direction), so that
the sum of squares increases iteration after iteration without bound.

For these drawbacks, several modifications of this process has been suggestedXIX to
improve its performance.

                                                       
XVIII Convergence implies that after, say r iterations, the residual sum of squares and the parameter
estimates are no longer (significantly) changing.
XIX Readers may consult Montgomery, Peck (1992) “Introduction to Linear Regression Analysis”, 2nd

ed., Page – 428; Draper, Smith (1998) “Applied Regression Analysis”, Third ed., Page 510-1 for these.

Readers may like to consult Bates, D. M. and Watts, D. G. (1988) “Nonlinear
Regression Analysis and Its Applications”, New York: John Wiley and Sons (specially
ch-2,3; page-32-133) for more general discussion (however, not best for the starters
/ beginners of regression) about this Non-linear Regression topic – which is very
much appreciated by so many other authors of this topic. In fact, the popular S
software’s (origin of S-plus and R) methods are based on those described in Bates
and Watts. Also, Seber, G. A. F. and Wild, C. J. (1989) “Nonlinear Regression”, New
York: John Wiley and Sons is another encyclopaedic reference.
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Nonlinear Regression using Statistical Software: SAS

The SAS System offers a powerful procedure to fit nonlinear regression
models, PROC NLINXX. The NLIN procedure implements iterative methods that
attempt to find least-squares estimates for nonlinear models. This procedure performs
univariate nonlinear regression using the least squares method. It was improved
dramatically in release 6.12 of The SAS System with the addition of a differentiator.
Prior to release 6.12, if we wanted to fit a nonlinear model we had to supply the
model specification as well as the formulas for the derivatives of the model. The latter
was a real hazzle, especially if the model is complicated. A method to circumvent the
specification of derivatives was to choose a fitting algorithm that approximates the
derivatives by differences. This algorithm, known as DUD (Does not Use
Derivatives) was hence very popular. However, the algorithm is also known to be
quite poor in computing good estimates. A method using derivatives is to be
preferred. With release 6.12 SAS will calculate derivatives for us if we wish. The user
still has the option to supply derivatives. It is, however, recommended to let The SAS
System calculate them for us. The minimum specification to fit a nonlinear regression
with PROC NLIN demands that the user specify the model and the parameters in the
model. All terms in the model not defined as parameters are looked for in the data set
that PROC NLIN processes. Since nonlinear models are often difficult to estimate,
PROC NLIN may not always find the globally optimal least-squares estimates.

Using a Starting Value Grid: A grid search is also available to select starting values
for the parameters. If we are not sure about the starting values, we can use a grid by
offering SAS more than one starting value. It will calculate the initial residual sum of
squares for all combinations of starting values and start the iterations with the best set.

Choosing the Fitting Algorithm: If our data and model are well behaved, it should
not make a difference how we fit the nonlinear model to data. Unfortunately, this can
not be said for all nonlinear regression models. We may have to choose carefully,
which algorithm to use. In PROC NLIN different fitting algorithms are invoked with
the METHOD= option of the PROC NLIN statement. Here are a few guidelines:
- If possible, choose a method that uses derivatives, avoid DUD. Unfortunately, if

we do not specify derivatives and a METHOD= option, SAS will default to the
DUD method.

- If the parameters are highly correlated, choose the Levenberg-Marquardt method
(keyword METHOD=MARQUARDT)

- Among the derivative dependent methods, prefer the Newton-Raphson
(METHOD=NEWTON) over the Gauss (METHOD=GAUSS) method.

Calculating predicted values and their confidence intervals: Predicted values are
not displayed on screen in PROC NLIN. However, we can request to save them to a
data set for later use. Along with the predicted values, we can calculate confidence
bounds for the mean predictions, prediction intervals for an individual predictions and
so forth.

                                                       
XX I am indebted to Professor Oliver Schabenberger (1998) of Virginia Tech for producing this SAS
part of this documentation. For more about this SAS procedure, readers may consult via internet at
http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/stat/chap45/sect2.htm
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Nonlinear Regression using Statistical Software: R

R uses nls() function to perform estimation in non-linear Regression models. Also, the
same function exists in S-plus 4 and above. The argumentsXXI to nls are the following.

formula
A non-linear model formula. The form is response ~ mean, where the right-hand side
can have either of two forms. The standard form is an ordinary algebraic expression
containing both parameters and determin-ing variables. Note that the operators now
have their usual arithmetical meaning.

data
An optional data frame for the variables (and sometimes parameters).

start
A list or numeric vector specifying the starting values for the parameters in the model.
The names of the components of start are also used to specify which
of the variables occurring on the right-hand side of the model formula are parameters.
All other variables are then assumed to be determining vari-ables.

control
An optional argument allowing some features of the default iterative procedure to be
changed.

algorithm
An optional character string argument allowing a particular fitting algorithm to be
specified. The default procedure is simply "default".

trace
An argument allowing tracing information from the iterative procedure to be printed.
By default none is printed.

                                                       
XXI I am indebted to W. N. Venables and B. D. Ripley (2002) “Modern Applied Statistics with S”, 4th

ed., for producing this part of the documentation.
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Illustrative Example:

Let the dataXXII file is in “c:\ draper.txt”, which is as follows:

t    Y
1 0.80
4 0.45
16 0.04

Let that, we have to estimate the parameter θ  in the non-linear model tY e θ ε−= +
from the above observations.

Now for starting analysis, we need a “initial value”. But we have no prior information
about what values θ  might take. There are a few suggestions for such situations: one
of which is to make a grid search using Statistical Software. Let us demonstrate how
we can do this.

Using Statistical Software: SAS: Making a Grid Search

We write the following program in SAS (I used SAS 6.12) to get an estimate (note
that we told SAS to do the search in Linearization technique by setting
METHOD=NEWTON):

DATA DS;
INPUT T Y;
DATALINES;
1 0.80
4 0.45
16 0.04
RUN;

PROC NLIN DATA=DS METHOD=NEWTON;
PARAMETERS G=-100 TO 100 BY .1;
MODEL Y = EXP(-(G*T));
OUTPUT OUT=NLINOUT PREDICTED=PRED L95M=L95MEAN
U95M=U95MEAN L95=L95IND U95=U95IND;
RUN;

PROC PRINT DATA=NLINOUT;
RUN;

There will be an enormous search to find this estimate since we assumed our potential
parameter (in the program, we wrote θ  = G) space to be –100 to 100 and told SAS to
look within each 0.1 interval (so that we can get minimum residual SS or minima).
However, after some iteration (when a convergent value will be found) SAS will
bring the following output (edited to shorten the length – but the key parts of the
output is unedited):

                                                       
XXII We are using this simple and small data set just for easy illustration purpose. This data set is taken
from Draper, Smith (1998) “Applied Regression Analysis”, Third ed., Page 553, Exercise 24.A.
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The SAS System          11:52 Sunday,

(Detailed Results on Non-Linear Least Squares Grid Search is omitted from here.)

Non-Linear Least Squares Iterative Phase

Dependent Variable Y       Method: Newton
                              Iter       G        Sum of Squares
                                 0       0.200000       0.000352
                                 1       0.203367       0.000302
                                 2       0.203449       0.000302
                                 3       0.203449       0.000302
NOTE: Convergence criterion met.

The SAS System          11:52 Sunday, April 6, 1997  50

          Non-Linear Least Squares Summary Statistics     Dependent Variable Y

                Source                DF Sum of Squares     Mean Square

                Regression             1  0.84379816630   0.84379816630
                Residual               2  0.00030183370   0.00015091685
                Uncorrected Total      3  0.84410000000

                (Corrected Total)      2  0.28940000000

                Parameter     Estimate    Asymptotic             Asymptotic 95 %
                                          Std. Error         Confidence Interval
                                                             Lower         Upper

                G      0.2034488738 0.00603799034 0.17746921275 0.22942853484

                                 Asymptotic Correlation Matrix

                                     Corr                 G
                                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                                     G                    1

The SAS System          11:52 Sunday, April 6, 1997  51

OBS     T      Y       PRED     L95MEAN    U95MEAN     L95IND      U95IND

 1      1    0.80    0.81591    0.79472    0.83711     0.75896    0.87286
 2      4    0.45    0.44317    0.39712    0.48923     0.37307    0.51328
 3     16    0.04    0.03857    0.02254    0.05461    -0.01666    0.09381

Therefore, from SAS, we get estimate of θ  = 0.2034488738. So we may suppose that
the actual value may be around zero for now and check it in other ways.

Calculation By Hand: Non-linear Regression:

We will now go through some iterations just to see how the process works. Readers
may think it as a slow motion of what happens to any Statistical Software when we
run a non-linear regression.

Iteration 0: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated initial value 0θ  = 0 (as our grid search indicates – note that, since we

have to estimate only one value, this is just a scaler, but for multi-parameter case, we
would have a vertor).
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0 0
0

1

( , ) 1

1

tf f eξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

0
1 1

0 0
0 2 2

0
3 3

0.80 1 -0.20

0.45 1 -0.55

0.04 1 -0.96

Y f

y Y f Y f

Y f

 − −   
     = − = − = − =     
     − −    

0
0

0

1
( , )

( ) 4

16

tf
Z t e

θ

ξ θ
θ

− ×

=

− 
∂   = = − × = −   ∂   − 

0 0Z Z′  = 12+42+162 = 273
1

0 0( )Z Z −′  = (273)-1 = 0.003663004
0

0 ( )Z Y f′ −  = (-0.20)× (-1)+(-0.55)× (-4)+(-0.96)× (-16) = 17.76
1 0

0 0 0 0( ) ( )b Z Z Z Y f−′ ′= −  = 0.003663004 ×  17.76= 0.06505495

1 0 0
ˆ ˆ bθ θ= + = 0.06505495 + 0 = 0.06505495

Iteration 1: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 1̂θ  = 0.06505495.

ˆ1
1

0.9370160

( , ) 0.7708821

0.3531441

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

1
1 1

1 1
1 2 2

1
3 3

-0.1370160

-0.3208821

-0.3131441

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   

ˆ

1
ˆ

-0.937016
( , )

( ) -3.083529

-5.650305

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

1 1Z Z′  = 42.3121
1

1 1( )Z Z −′  = (42.3121)-1

1
1( )Z Y f′ −  = 2.887195

1 1
1 1 1 1( ) ( )b Z Z Z Y f−′ ′= −  = 0.06823569

2 1 1
ˆ ˆ bθ θ= + = 0.1332906

Iteration 2: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 1̂θ  = 0.1332906.

ˆ2
2

0.8752107

( , ) 0.5867464

0.1185228

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.
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Now, 

2
1 1

2 2
2 2 2

2
3 3

-0.07521069

-0.13674643

-0.07852278

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   

ˆ

2
ˆ

-0.8752107
( , )

( ) -2.3469857

-1.8963644

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

2 2Z Z′  = 9.870534
1

2 2( )Z Z −′  = (9.870534)-1

2
2 ( )Z Y f′ −  = 0.5356749

1 2
2 2 2 2( ) ( )b Z Z Z Y f−′ ′= −  = 0.05427011

3 2 2
ˆ ˆ bθ θ= + = 0.1875607

Iteration 3: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 3̂θ = 0.1875607.

ˆ3
3

0.82897877

( , ) 0.47225180

0.04973871

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

3
1 1

3 3
3 2 2

3
3 3

-0.028978765

-0.022251802

-0.009738708

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   

ˆ

3
ˆ

-0.8289788
( , )

( ) -1.8890072

-0.7958193

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

3 3Z Z′  = 4.888882
1

3 3( )Z Z −′  = (4.888882)-1

3
3( )Z Y f′ −  = 0.07380705

1 3
3 3 3 3( ) ( )b Z Z Z Y f−′ ′= −  = 0.01509691

4 3 3
ˆ ˆ bθ θ= + = 0.2026576

Iteration 4: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 4̂θ = 0.2026576

ˆ4
4

0.81655777

( , ) 0.44457770

0.03906526

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

4
1 1

4 4
4 2 2

4
3 3

-0.0165577742

0.0054223029

0.0009347429

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   
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ˆ

4
ˆ

-0.8165578
( , )

( ) -1.7783108

-0.6250441

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

4 4Z Z′  = 4.219836
1

4 4( )Z Z −′  = (4.219836)-1

4
4 ( )Z Y f′ −  = 0.003293584

1 4
4 4 4 4( ) ( )b Z Z Z Y f−′ ′= −  = 0.0007805005

5 4 4
ˆ ˆ bθ θ= + = 0.2034381

Iteration 5: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 5̂θ = 0.2034381

ˆ5
5

0.81592070

( , ) 0.44319189

0.03858044

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

5
1 1

5 5
5 2 2

5
3 3

-0.015920699

0.006808111

0.001419557

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   

ˆ

5
ˆ

-0.8159207
( , )

( ) -1.7727676

-0.6172871

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

5 5Z Z′  = 4.189475
1

5 5( )Z Z −′  = (4.189475)-1

5
5 ( )Z Y f′ −  = 4.455581× 10-05

1 5
5 5 5 5( ) ( )b Z Z Z Y f−′ ′= −  = 1.063518× 10-05

6 5 5
ˆ ˆ bθ θ= + = 0.2034487

Iteration 6: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 6̂θ = 0.2034487

ˆ6
6

0.81591202

( , ) 0.44317304

0.03857388

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

6
1 1

6 6
6 2 2

6
3 3

-0.015912022

0.006826964

0.001426121

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   
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ˆ

6
ˆ

-0.8159120
( , )

( ) -1.7726921

-0.6171821

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

6 6Z Z′  = 4.189064
1

6 6( )Z Z −′  = (4.189064)-1

6
6 ( )Z Y f′ −  = 5.276473× 10-07

1 6
6 6 6 6( ) ( )b Z Z Z Y f−′ ′= −  = 1.259583× 10-07

7 6 6
ˆ ˆ bθ θ= + = 0.2034489

Iteration 7: We have the function ( , ) tY f e θξ θ ε ε−= + = +  in our hand with

approximated value 7̂θ = 0.2034489

ˆ7
7

0.8159119

( , ) 0.4431728

0.0385738

tf f e θξ θ − ×

 
 = = =  
  

 since t is a 3 1×  vector.

Now, 

7
1 1

7 7
7 2 2

7
3 3

-0.015911919

0.006827188

0.001426199

Y f

y Y f Y f

Y f

 −  
   = − = − =   
   −   

ˆ

7
ˆ

-0.8159119
( , )

( ) -1.7726912

-0.6171808

tf
Z t e θ

θ θ

ξ θ
θ

− ×

=

 
∂   = = − × =   ∂    

7 7Z Z′  = 4.189059
1

7 7( )Z Z −′  = (4.189059)-1

7
7 ( )Z Y f′ −  = 6.236455× 10-09

1 7
7 7 7 7( ) ( )b Z Z Z Y f−′ ′= −  = 1.488749× 10-09

8 7 7
ˆ ˆ bθ θ= + = 0.2034489

Since 8 7
ˆ ˆθ θ=  we terminate the process and declare 8̂θ  = 0.2034489 as our desired

estimate.
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Using Statistical Software: R: Non-linear Regression

Now, using Statistical Software like R (I used R 1.7.1) we can do the whole procedure
just in a blink (and of course, without pain!) by writing the following commands in

the R console:

> options(prompt=" R> " )
 R> draper<-read.table("c:\\draper.txt",header=T)
 R> draper.data<-data.frame(draper)
 R> attach(draper.data)
 R> nls(Y~exp(-(g*t)), data=draper.data, start = c(g =
0), trace = T)

1.2641 :  0
0.2197979 :  0.06505495
0.03052205 :  0.1332906
0.001429753 :  0.1875607
0.000304435 :  0.2026576
0.0003018342 :  0.2034381
0.0003018337 :  0.2034487
0.0003018337 :  0.2034489
Nonlinear regression model
  model:  Y ~ exp(-(g * t))
   data:  draper.data
        g
0.2034489
 residual sum-of-squares:  0.0003018337

 R> coef(nls(Y~exp(-(g*t)), data=draper.data, start = c(g
= 0), trace = T))

(---)
        g
0.2034489

Note that, the estimated value of θ  = 0.2034489 approximately in all our (slow
motion hand calculation and R results within a blink) cases – which matches our SAS
result too. Thus, we declare 0.2034489 as our estimate of the parameter θ  based on
the given data.
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By now, readers may think that R is not capable of doing a grid search to find
the initial value. But this is not true: let us see a few R commandsXXIII to clear
it up (that is, grid search is possible in R but we will go through another way):

 R> attach(draper.data)
 R> fit0 <- lm(log(Y)~t-1, draper)
 R> fit0
Call:
lm(formula = log(Y) ~ t - 1, data = draper)

Coefficients:
      t
-0.2012XXIV   

 R> fit1 <- nls(Y~exp(-THETA*t), data=draper,
start=c(THETA=-0.2012))
 R> fit1

Nonlinear regression model
  model:  Y ~ exp(-THETA * t)
   data:  draper

    THETA
0.2034489

 residual sum-of-squares:  0.0003018337

R> summary(fit1)

Formula: Y ~ exp(-THETA * t)

Parameters:
      Estimate Std. Error t value Pr(>|t|)
THETA 0.203449   0.006002   33.90  0.00087 ***
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.01228 on 2 degrees of freedom

Alternatively, we could compute the sum of squares for all values of THETA = seq(0,
.01, 100) in a loop, then find the minimum by eye. Also, for a problem that has
several parameters, "expand.grid" will produce a grid, and we can compute the value
of function and the sum of squares of residuals at every point in the grid in a single
loop, etc.

                                                       
XXIII Thanks to Spencer Graves and Douglas Bates for the kind direction about this grid search using R.
XXIV We would expect that (-0.2012) should provide a reasonable starting value for nls.
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Using Statistical Software: NLREG nonlinear regression program

NLREG nonlinear regression programXXV has a "Sweep" statement that can be used to
try multiple starting points for a parameter or do a grid search if there are multiple
parameters.  However, it is rarely needed.

Here is an NLREG program to solve our example problem.  The Sweep
statement tries starting values for Theta from 1 to 10 in steps of 0.5.  It turns out that
the program doesn't need the Sweep statement because it quickly achieves
convergence with the default starting value of 1.0.  The optimum value of Theta to fit
your function is 0.203448874; it was found in 10 iterations.

Variables t, Y;
Parameter Theta;
Function Y = EXP(-(THETA * t));
Sweep Theta = 0, 10, 0.5;
Plot;
Data;
1 0.80
4  0.45
16 0.04

And the out put is as follows :

NLREG version 6.1
Copyright (c) 1992-2004 Phillip H. SherrodXXVI.

Number of observations = 3
Maximum allowed number of iterations = 500
Convergence tolerance factor = 1.000000E-010
Stopped due to: Both parameter and relative function convergence.
Number of iterations performed = 8
Final sum of squared deviations = 3.0183370E-004
Final sum of deviations = -7.6585277E-003
Standard error of estimate = 0.0122848
Average deviation = 0.0080551
Maximum deviation for any observation = 0.0159119
Proportion of variance explained (R^2) = 0.9990  (99.90%)
Adjusted coefficient of multiple determination (Ra^2) = 0.9990
(99.90%)
Durbin-Watson test for autocorrelation = 1.810
Analysis completed 15-Apr-2004 05:51.  Runtime = 0.44 seconds.

             ----  Descriptive Statistics for Variables  ----

      Variable       Minimum value   Maximum value    Mean value     Standard dev.
------------------  --------------  --------------  --------------  --------------
                 t               1              16               7        7.937254
                 Y            0.04             0.8            0.43       0.3803945

                   ----  Calculated Parameter Values  ----

Parameter  Initial guess   Final estimate   Standard error    t   Prob(t)
---------  -------------   --------------   --------------  ----  -------

Theta                         0.5                      0.203448874               0.006002203          33.90     0.00087

                                                       
XXV Demonstration version (free for a month) is available at http://www.nlreg.com
XXVI I am indebted to Phil Sherrod for writing the above example program for me personally.


